TOME 1
État des lieux & Analyse écologique

SITUATION GÉNÉRALE

NATURA 2000 Bancs des Flandres
TABLE DES MATIERES

PRESENTATION .. 5
1 Le réseau Natura 2000 en France .. 5
 1.1. Natura 2000 : un réseau européen de sites protégés .. 5
 1.2. Natura 2000 : une gestion concertée ... 5
 1.3. Les outils spécifiques à Natura 2000 (extrait de http://www.developpement-durable.gouv.fr) .. 6
2 Description du site Bancs des Flandres : intérêt biologique et vulnérabilité 7
 2.1. Zone de protection spéciale FR3112006 Bancs des Flandres 7
 2.2. Site d’importance communautaire FR3102002 Bancs des Flandres 8
 2.3. Vulnérabilité du site des Bancs des Flandres .. 8
 2.4. Cadre juridique des documents d’objectif .. 9
3 L’élaboration des DOCOB sur le site Natura 2000 des Bancs des Flandres 10
 3.1. Organisation du pilotage du site des Bancs des Flandres .. 10
 3.2. Échéancier prévisionnel des DOCOB du site des Bancs des Flandres 13
 3.3. Étapes clés de l’élaboration des DOCOB du site des Bancs des Flandres 13
4 Comment lire les documents d’objectifs ? .. 15
INVENTAIRES, PROTECTIONS ET CLASSEMENTS .. 16
1 Contexte foncier .. 16
 2.1. Mesures d’inventaires patrimoines naturels ... 16
 2.2. Inventaires marins ... 17
3 protections en faveur du patrimoine naturel .. 18
4 Protection du paysage ... 19
OUTILS DE GESTION DE LA QUALITE DU MILIEU .. 20
1 Les directives européennes .. 20
 1.1. SDAGE Artois Picardie ... 21
 1.2. SAGE Delta de l’AA ... 22
 1.3. PAMM SRM Manche - Mer du Nord ... 22
2 Convention OSPAR .. 23
3 Réseau de surveillance de la qualité du milieu marin ... 23
4 Politiques environnementales du Port de Dunkerque ... 26
 4.1. Schéma Directeur des Dragages (SDD) du Port de Dunkerque 27
 4.2. Schéma Directeur d’Assainissement (SDA) du Port de Dunkerque 30
 4.3. Plan de gestion du trait de côte du Port de Dunkerque ... 30
5 Synthèse Inventaires/Protection/Classement/Outils de gestion .. 31
MILIEU PHYSIQUE .. 33
1 Contexte géomorphologique .. 33
 1.1. Géomorphologie terrestre ... 33
 1.2. Géomorphologie sous-marine .. 33
2 Contexte climatique et météorologique ... 35
3 Contexte hydrodynamique ... 36
 3.1. Marée ... 36
 3.2. Surcote et décote .. 36
 3.3. Courants de marée ... 37
 3.4. Houles ... 38
SITUATION GENERALE

4 Contexte hydro-morphosédimentaire ... 39
4.1. Transit littoral ... 39
4.2. Evolution morphologique des fonds ... 40
4.3. Evolution morphologique du littoral .. 42
5 Changement climatique et risques naturels ... 44
6 Synthèse milieu physique .. 47

Qualité du milieu ... 49

1 Méthodologie retenue ... 49
1.1. Compartiment sédimentaire ... 49
1.2. Compartiment aqueux .. 50
2 Qualité des sédiments marins ... 53
2.1. Qualité des sédiments portuaires ... 53
2.2. Qualité des sédiments des Bancs des Flandres ... 55
2.3. Bio-évaluation de la qualité des sédiments ... 55
3 Qualité des eaux marines ... 56
3.1. Qualité des eaux portuaires .. 57
3.2. Qualité des eaux marines et littorales des Bancs des Flandres 58
3.3. Macro-déchets ... 61
3.4. Incidences de la qualité des eaux sur les organismes marins 62
4 Qualité des eaux continentales superficielles ... 63
4.1. Les wateringues .. 63
4.2. Les canaux ... 64
5 Synthèse qualité du milieu ... 67

REFERENCES ... 69
PLANCHES .. 73
1 Le réseau Natura 2000 en France

1.1. Natura 2000 : un réseau européen de sites protégés

Le réseau Natura 2000 est constitué par la désignation de sites :

- Les Zones de Protection Spéciales (ZPS) désignées au titre de la Directive « Oiseaux »,

1.2. Natura 2000 : une gestion concertée

En France, les orientations et mesures de gestion sont élaborées au cours d’un processus de concertation impliquant l’ensemble des acteurs intervenant sur les milieux naturels en respectant les exigences économiques, sociales et culturelles. Elles sont validées par un comité de pilotage (COPIL) où sont représentés tous les usagers. La définition des orientations et des mesures de gestion se fait de manière à assurer la conservation ou la restauration des habitats et espèces ciblés, en tenant compte des activités économiques, sociales, culturelles et de défense existantes. Une fois validé par le COPIL, le DOCOB est approuvé par le(s) préfet(s) concerné(s). Par conséquent elle doit se baser sur un état des lieux précis du patrimoine naturel et des usages du site.

En mer, les mesures de gestion peuvent être de 5 types :

- **Engagement contractuel volontaire** (charte de bonnes pratiques par exemple).
- **Cohérence des politiques publiques** existantes (gestion du DPM, licences de pêche professionnelle par exemple).
- **Proposition de réglementation aux services de l’état compétents** (en lien notamment avec la stratégie de création d’AMP et les réflexions sur les réserves halieutique ou réserves de biotope).
- **Suivi scientifiques** de l’état de conservation des espèces et habitats.
- **Communication et sensibilisation**.

- Evaluation des incidences sur les sites Natura 2000

L'évaluation des incidences Natura 2000 (EIN2000) a pour but de vérifier la compatibilité d'une activité avec les objectifs de conservation du ou des sites Natura 2000 situé(s) à proximité. Plus précisément, il convient de déterminer si le projet peut avoir un effet significatif sur les habitats et les espèces végétales et animales ayant justifié la désignation du site. Si tel est le cas […], l’autorité décisionnaire doit s’opposer au projet, sauf s’il présente un intérêt public majeur, qu’aucune autre alternative n’est possible et que le porteur de projet s’engage à la mise en œuvre de mesures d’évitement, de réduction et compensatoire. Les activités soumises à EIN2000 sont répertoriées dans des listes nationales, départementales, consultables sur http://www.developpement-durable.gouv.fr.

L’évaluation des incidences est proportionnée à la nature et à l’importance des activités, aux enjeux de conservation du ou des sites Natura 2000 concernés et à l’existence ou non d’incidences potentielles du projet sur ces sites.

Les activités réalisées dans le cadre de contrats ou de chartes Natura 2000 sont dispensées d’évaluation des incidences Natura 2000.

- Les contrats Natura 2000 marins

- La charte Natura 2000 en mer

La Charte Natura 2000 constitue l’autre volet de la politique contractuelle et volontaire de Natura 2000. A la différence des contrats, la charte ne prévoit pas de contrepartie financière. Cet outil permet aux signataires de s’engager dans la démarche Natura 2000 sans nécessiter un lourd investissement personnel et financier. La charte Natura 2000 d’un site est constitutive du DOCOB. La charte contient des engagements de gestion courante et durable qui contribuent, selon les orientations définies dans le DOCOB, à la conservation des habitats et des espèces présents sur le site Natura 2000. L’adhérent s’engage pour une durée de 5 ans, durée du DOCOB.

Ces engagements […] relèvent davantage des bonnes pratiques. La charte contient généralement deux types d’engagements :

- des engagements généraux valables sur l’ensemble du site ;
- des engagements différenciés en fonction des habitats ou des espèces [ou en fonction des usages].
2 Description du site Bancs des Flandres : intérêt biologique et vulnérabilité

2.1. Zone de protection spéciale FR3112006 Bancs des Flandres

Surface : 1171,67 km²

Situé au large du littoral du département du Nord, la ZPS Bancs des Flandres s’appuie, dans sa partie orientale, sur le trait de côte, jusqu’à l’avant-port ouest de Dunkerque. Dans sa partie ouest, le site se décolle de la côte et englobe le banc sableux « Dick occidental » jusqu’à atteindre environ la longitude 1°46’50”E. Au nord, le site se prolonge, entre les frontières maritimes franco-anglaises et franco-belges, jusqu’à atteindre environ la latitude 51°18’30”N.

Zone d’alimentation : les Bancs des Flandres a constitué un site d’importance nationale pour le maintien d’une des plus importantes populations de Sternes naines, mais aussi du Grand Gravelot et du Gravelot à collier interrompu qui sont devenus anecdotiques. Mais le site a le potentiel pour constituer de nouveau un noyau de population important pour ces espèces dans le contexte de déclin local. En outre, Sternes pierregarin et caugek, espèces à très forte valeur patrimoniale, ainsi que Fulmar boréal et Mouette tridactyle sont dépendantes du site des Bancs de Flandres puisqu’elles viennent s’y alimenter en grand nombre.

Zone de passage migratoire : Le secteur des Bancs des Flandres, par sa proximité avec le détroit du pas de Calais connait un flux d’oiseaux migrateurs très important en automne mais aussi au printemps. Le site est fréquenté traditionnellement par des espèces côtières telles que la Bernache cravant, les Sternes, et de nombreuses espèces de limicoles tandis qu’il peut être le théâtre de mouvements très importants d’espèces pélagiques plus rares telles que l’Océanite culblanc, les Labbes et les Puffins.

Zone d’hivernage : Le site joue un rôle très important en hiver pour des espèces marines telles que les Grèbes huppés et esclavon qui fréquentent la côte, et les secteurs situés au large qui accueillent notamment la majorité des Pingouins torda, Guillemots de Troïl, Mouettes tridactyles et des Fous de Bassan. Les plages et estrans les plus tranquilles sont d’importance pour les limicoles qui viennent s’y alimenter et s’y reposer.
en nombre. Le site est d’importance pour l’*Eider à duvet*, le *Plongeon catmarin* et la *Macreuse noire* ainsi que pour les espèces patrimoniales de Bécasseau sanderling, Goélands marin et cendré.

2.2. Site d’importance communautaire FR3102002 Bancs des Flandres

Surface : 1129,19 km²

Situé au large du littoral du département du Nord, le pSIC Bancs des Flandres s’appuie, dans sa partie orientale, sur le site Natura 2000 FR3100474 Dunes de la plaine maritime flamande. Entièrement marin, il s’appuie également sur la limite des plus basses mers (zéro hydrographiques des cartes marines) entre les avant-ports ouest et est de Dunkerque (avant-ports exclus). Dans sa partie ouest, le site se décolle de la côte et englobe le banc sableux « Dick occidental » jusqu’à atteindre environ la longitude 1°46’50”E. Au nord, le site se prolonge, entre les frontières maritimes franco-anglaises et franco-belges, jusqu’à atteindre environ la latitude 51°18’30”N.

Habitat : Avec des fonds sableux, le site Bancs des Flandres n’est composé que d’un habitat d’intérêt communautaire : « *Bancs de sable à faible couverture permanente d’eau marine* » (1110), notamment dans sa déclinaison « sables moyens dunaires » (1110-2). Ces accumulations sous-marines de sables, dites « dunes hydrauliques », liées à des conditions hydrodynamiques particulières, ont prévalu dans la proposition du site et qu’il convient de préserver pour leur diversité biologique.

Espèces : Le site se justifie également par la présence de certaines espèces de mammifères marins d’intérêt communautaire, et notamment le *Phoque veau-marin* (1365) (*Phoca vitulina*) et *Phoque gris* (1364) (*Halichoerus grypus*) qui fréquentent le secteur. L’utilisation du site Banc des Flandres se fait pour des raisons alimentaires. Cette zone est aussi fréquentée couramment par le *Marsouin commun* (1351) (*Phocoena phocoena*), notamment pour son alimentation, et le *Lagénorhynque à rostre blanc* (*Lagenorhynchus albirostris*) espèce présente sur la liste rouge nationale.

2.3. Vulnérabilité du site des Bancs des Flandres

L’intégrité du site est globalement préservée. Toutefois, certaines pratiques doivent faire l’objet d’un suivi particulier au regard de l’importance fonctionnelle des habitats et des espèces qui les utilisent. La zone est caractérisée par un trafic maritime, parmi les plus dense du monde, et la présence de la zone industrialo-portuaire de Dunkerque. La proposition de ce site a été décidée en connaissance de ces éléments, que sont les digues portuaires et leur entretien, les avant-ports, chenaux de navigation et dragages d’entretien, les clapages des sédiments au sein du site ainsi que l’ensemble des opérations liées directement ou indirectement à l’activité industrialo-portuaire du dunkerquois, qui a vocation à se développer.

Outre les activités portuaires de Dunkerque, de nombreuses associations sportives sont présentes sur le secteur et proposent des prestations variées (longe côte, équitation, cerf-volant, naturalisme, chasse, plongée sous marine à proximité des nombreuses épaves...). L’ensemble des activités liées au nautisme (plaisance, kite-surf, voile...) sont largement répandu le long du littoral. Les plages de la frontière belge jusqu’à Malo-les-bains sont hautement fréquentées. Des problèmes liés à la fréquentation peuvent être enregistrés ponctuellement, notamment du point de vue de la reproduction des oiseaux.

Par ailleurs, le site est connu pour la pratique de la pêche, qu’elle soit professionnelle ou de loisir de par sa richesse halieutique. Un approfondissement des connaissances sur ce point est en cours par le CRPMEM et
l'AAMP afin d'apporter des améliorations à la gestion du milieu. L’enjeu socio-économique est donc fort sur les Bancs des Flandres.

2.4. Cadre juridique des documents d’objectif

Tout DOCOB doit contenir six éléments qui sont définis à l'article R414-11 du Code de l'environnement. Ces éléments peuvent être regroupés en trois tomes correspondant aux phases de la concertation : la réalisation de l’état des lieux, la proposition de mesures de gestion et l’évaluation de ces mesures. Il n’est pas soumis à une procédure d’enquête publique préalablement à son approbation par le préfet. Il est simplement tenu à la disposition du public dans les mairies concernées. Il est révisé tous les 6 ans.

- **Tome 1 : Etat des lieux**

1°) **Un rapport de présentation** décrivant l’**état initial de conservation** et les exigences écologiques des habitats naturels et des espèces qui ont justifié la désignation du site, la **localisation** cartographique de ces habitats naturels et des habitats de ces espèces, les **mesures et actions de protection** de toute nature qui, le cas échéant, s’appliquent au site et aux **activités humaines** qui s’y exercent au regard, notamment, de leurs effets sur l’état de conservation de ces habitats et espèces ;

- **Tome 2 : Enjeux, orientations et mesures de gestion**

2°) **Les objectifs de développement durable** du site permettant d’**assurer la conservation** et, s’il y a lieu, la **restauration** des habitats naturels et des espèces qui justifient la désignation du site, en tenant compte des activités économiques, sociales, culturelles et de défense qui s'y exercent ainsi que des particularités locales;

3°) **Des propositions de mesures** de toute nature permettant d’atteindre ces objectifs indiquant les priorités retenues dans leur mise en œuvre en tenant compte, notamment, de l’état de conservation des habitats et des espèces au niveau du site et au niveau national, et des priorités mentionnées dans l’article R. 414-1 ;
4°) **Un ou plusieurs cahiers des charges** types applicables aux contrats Natura 2000 prévus aux articles R. 414-13 et suivants, qui indiquent pour chaque action contractuelle l’objectif poursuivi, le périmètre d’application ainsi que les habitats et espèces intéressés et son coût prévisionnel. Un arrêté du ministre chargé de l’environnement fixe la liste des actions contractuelles éligibles à une contrepartie financière de l’État. Le cas échéant, un arrêté du préfet de région précise cette liste compte tenu, notamment, des spécificités locales, des objectifs de conservation prioritaires et d’une allocation optimale des moyens.

5°) La liste des engagements faisant l’objet de la **charte Natura 2000** du site (article R. 414-12) ;

- Tome 3 : Tableau de bord du site Natura 2000

6°) **Les modalités de suivi** des mesures projetées et les méthodes de surveillance des habitats et des espèces en vue de l’évaluation de leur état de conservation.

3 L’élaboration des DOCOB sur le site Natura 2000 des Bancs des Flandres

3.1. Organisation du pilotage du site des Bancs des Flandres

Présentation des missions de l’équipe projet

- L’État

L’État est le garant de la préservation des habitats et des espèces d’intérêt communautaire vis-à-vis de la Commission européenne. Pour les sites Natura 2000 Bancs des Flandres, l’**État est représenté par le préfet maritime de la Manche et de la mer du Nord et le préfet du Nord**. Il a confié l’élaboration des DOCOB au Grand Port Maritime de Dunkerque (GPMD), comme structure porteuse principale et au Comité Régional des Pêches Maritimes des Elevages Marins du Nord-Pas-de-Calais et de la Picardie (CRPMEM) comme structure associée. L’Arrêté n° 2010/1657 du 08 juin 2010 fixe ce principe (Annexe 1).

La DREAL et la DDTM et la DML sont ainsi les interlocuteurs privilégiés des opérateurs pour les aider dans la réalisation des DOCOB.
Les opérateurs

Le GPMD est en charge de la rédaction des documents d’objectifs. Il est responsable du pilotage, de l’animation et de la coordination des travaux relatifs à l’élaboration des DOCOB. En raison de sa compétence, le CRPMEM est chargé des aspects liés à l’activité de pêche maritime professionnelle.

Les tâches administratives afférentes au fonctionnement du comité de pilotage sont assurées par la structure porteuse principale et la Communauté urbaine de Dunkerque (CUD).

Concernant les sites des Bancs des Flandres, le choix des structures porteuses a été arrêté au niveau du ministère de l’écologie, de l’énergie, du développement durable et de la mer (MEEDDM) (arrêté de composition de comité de pilotage n° 2010/1657 du 08 juin 2010), en concertation avec les acteurs concernés, en novembre 2009.

Le comité de pilotage (COPIL)

Le rôle du COPIL est d’examiner, d’amender et de valider, à chaque étape d’avancement, les documents et les propositions que lui soumet la structure porteuse (principale) en amont de la tenue de chaque COPIL. La mission finale du COPIL est de valider les DOCOB qui seront ensuite approuvés par arrêtés préfectoraux. Dans le cas où le préfet n’approuverait pas les DOCOB, les structures porteuses pourront être amenées à poursuivre leur mission.

Dans le cas présent, la présidence du COPIL est assurée conjointement par l’Etat (représenté par le préfet du département du Nord et le préfet maritime de la Manche et de la mer du Nord) et par la Communauté urbaine de Dunkerque (CUD). Les présidents de COPIL arrêtent les dates des COPIL, valident et signent également les documents émis lors des COPIL.

Les tâches administratives afférentes au fonctionnement du comité de pilotage (secrétariat, envoi des convocations, relevé de décision de réunion...) sont assurées par la structure porteuse principale et la Communauté urbaine de Dunkerque (CUD).

Afin de préparer au mieux chacun des comités de pilotage, un comité technique est organisé (CoTech). Il est composé de la DREAL, de la DDTM, de la préfecture maritime de la Manche et de la mer du Nord et de la préfecture du Nord, de la CUD ainsi que des 2 structures porteuses à savoir GPMD et CRPMEM.
Chaque réunion du comité de pilotage doit donner lieu à un relevé de décisions. Celui-ci indique notamment le nom et la qualité des membres présents ou représentés, les questions traitées au cours de la séance et le sens des décisions du comité ainsi que la mention des opinions divergentes lorsque la demande en est faite.

Les comptes-rendu des comités de pilotage sont disponibles sur le site http://bancsdesflandres.n2000.fr/

- Les groupes de travail (GT)

- Les structures d’appui à la réalisation des DOCOB

L’Agence des Aires Marines Protégées (AAMP) quant à elle, apporte un appui méthodologique aux structures porteuses à travers le réseau des aires marines (AMP) qu’elle coordonne et dont elle assure le reporting. A ce titre, le « chargé de mission coordonnateur » de la structure principale participe aux échanges thématiques avec les autres AMP aussi bien à l’échelle de la façade Manche Mer du nord qu’au niveau national.

Dans le cadre du suivi des inventaires écologiques, un Comité de Suivi Scientifique (CSS) est réuni. Il est composé notamment de la DREAL, de l’AAMP, des structures porteuses et des prestataires des études.

L’avis du Conseil Scientifique Régional du Patrimoine Naturel (CSRPN) sera requis par les structures porteuses, via la DREAL Nord-Pas-de-Calais, aux étapes suivantes :

- après le diagnostic écologique et socio-économique et la définition des enjeux,
- lorsque les DOCOB seront rédigés dans leur totalité.
3.2. Echéancier prévisionnel des DOCOB du site des Bancs des Flandres

3.3. Etapes clés de l’élaboration des DOCOB du site des Bancs des Flandres

Les Bancs des Flandres sont soumis à l’élaboration de deux DOCOB, l’un au titre de la directive « Oiseaux », l’autre de la directive « Habitat ». Au vu des propositions de mesures qui seront élaborées, l’opérateur principal pourra proposer au final la rédaction d’un document unique. La démarche de construction du volet opérationnel des DOCOB des Bancs des Flandres se déroule en 3 phases successives.

1) L’État des lieux du site, tout d’abord, et l’analyse de l’état de conservation qui s’appuie sur deux éléments préalables :
 • Les inventaires écologiques complémentaires à ceux qui ont permis la désignation du site. Ils sont réalisés par l’AAMP et par la DREAL.
 • Les études socio-économiques afin d’acquérir une meilleure connaissance des usages du site. Elles sont réalisées par les deux opérateurs (CRPMEM et GPMD).

2) Dans un second temps, la détermination des enjeux et objectifs de développement durable seront proposés. Il s’agit des enjeux de conservation du site et, s’il y a lieu, de restauration, bâtis à partir des inventaires réalisés préalablement et hiérarchisés afin d’orienter et de prioriser les mesures à mettre en œuvre. Les enjeux socio-économiques du site seront aussi annoncés.

Pour plus de lisibilité, des orientations de gestion s’apparentant à des axes stratégiques de gestion à long terme seront proposées à partir des objectifs de développement durable. Elles permettront de guider dans le temps l’animation du site et répondront à l’objectif général, c’est-à-dire la finalité fondamentale de Natura 2000 : la conservation des habitats naturels et des espèces d’intérêt communautaire.

1 La notion d’enjeu correspond à ce que l’on risque de perdre ou de gagner si une intervention se produit.
3) Enfin, les mesures de gestion seront déterminées lors d’une nouvelle phase de concertation. Les coûts de chacune des mesures seront évalués, les modalités de suivi de ces mesures discutées et éventuellement la pertinence des périmètres examinés. Les mesures de gestion seront déclinées en actions opérationnelles.

Processus de construction du volet opérationnel du DOCOB.
4 Comment lire les documents d’objectifs ?

Les documents d’objectifs proprement dit et ses 5 cahiers constituant l’Etat des lieux.

- **Tome 1 : Etat des lieux**
 - Situation générale
 - Habitats, Avifaune et Mammifères marins
 - Activités récréatives et de loisirs
 - Activités structurantes
 - Activités pêches et aquaculture

- **Tome 2 : Enjeux, orientations et mesures de gestion**
 - A PRECISER
 - Les fiches mesures par orientations
 - Le plan d’actions
 - Les cahiers des charges
 - Les chartes Natura 2000

- **Tome 3 : Tableau de bord du site Natura 2000**
 - A PRECISER

L’annexe cartographique dans laquelle on retrouvera l’ensemble des cartes produites pour le document d’objectifs : contexte général, réglementations, mesures d’inventaires, cartographie des activités humaines et des espèces d’intérêt communautaire.

L’annexe administrative dans laquelle on retrouvera les textes réglementaires relatifs à la ZPS et la SIC « Bancs des Flandres », ainsi que l’ensemble des comptes-rendus des réunions de concertation (comité de pilotage et groupes de travail) et les présentations diffusées à l’occasion.
INVENTAIRES, PROTECTIONS ET CLASSEMENTS

Le site Natura 2000 s’inscrit dans un réseau d’aires marines protégées et de zones identifiées au vu de leur intérêt biologique. L’objet de cette partie est de dresser un état des lieux non exhaustif, des mesures existantes sur et à proximité du site. Les Bancs des Flandres bénéficient peu de mesures réglementaires ou d’inventaires. Au contraire, à une échelle plus large, il existe une grande diversité d’outils d’inventaires et de protection de l’environnement qui répondent chacun à des enjeux spécifiques.

1 Contexte foncier

Les ¾ du site Natura 2000 des bancs des Flandres est occupé par la circonscription maritime du port de Dunkerque, qui gère les accès, les zones d’attentes et les chenaux de navigation au territoire portuaire.

Le Domaine Publique Maritime (DPM) correspond aujourd’hui à l’estran (zone intertidale), et au sol et sous sol ainsi que les lais et relais de la mer. Le DPM est la propriété inaliénable de l’Etat, et de ce fait, l’utilisation du DPM est orientée vers la satisfaction des besoins collectifs et repose, par conséquent, sur un principe de liberté d’accès et de gratuité de l’usage public. Il est géré par la Direction de la mer et du Littoral (DML). On distingue de DPM naturel du DPM artificiel, qui comprend les ouvrages portuaires et les infrastructures liées à la navigation (phares, balises, ...). Il est délimité administrativement à partir de critères « naturels » : constatation sur le terrain (rivage de la mer, lais et relais) ou utilisation de procédés scientifiques. La domanialité publique, imprescriptible et inaliénable, est donc « gelée » à un moment donné mais celle-ci peut s’accroître en cas d’avancée de la mer.

Il est à rappeler que la capitainerie du port de Dunkerque au sein de la limite administrative a un pourvoir de réglementer les activités, ainsi que sur les ouvrages portuaires au delà de cette limite et que le GPMD a la capacité de gérer l’ensemble des terrains dont il est propriétaire et/ou gestionnaire (DPM, canaux exutoires).

2 Mesures d’inventaires patrimoines naturels

Les outils d’inventaire n’ont pas de valeur juridique ou réglementaire directe.
Périmètres d’inventaires et de protection du patrimoine naturel à proximité des Bancs des Flandres

2.1. Inventaires ZNIEFF

<table>
<thead>
<tr>
<th>code</th>
<th>Nom du site</th>
<th>Distance des Bancs des Flandres</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZNIEFF de type 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>310007286</td>
<td>Platier d’Oye et Plage du Fort Vert</td>
<td>Limitrophe</td>
</tr>
<tr>
<td>310030011</td>
<td>Dunes de Gravelines</td>
<td>Limitrophe</td>
</tr>
<tr>
<td>310007020</td>
<td>Dune du Clipon</td>
<td>Limitrophe</td>
</tr>
<tr>
<td>310013271</td>
<td>Dunes de Leffrinckoucke</td>
<td>Limitrophe</td>
</tr>
<tr>
<td>310007021</td>
<td>Dunes Marchand</td>
<td>Limitrophe</td>
</tr>
<tr>
<td>310013275</td>
<td>Dunes du Perroquet</td>
<td>Limitrophe</td>
</tr>
<tr>
<td>310030014</td>
<td>Héronnière de Gravelines</td>
<td></td>
</tr>
<tr>
<td>310013300</td>
<td>Marais et pelouses sableuses de Fort Mardyck</td>
<td></td>
</tr>
<tr>
<td>310013303</td>
<td>Bassin de Coppenaxfort, watergang du Zout Gracht et prairies et mares de la Ferme Belle à Loon-Plage</td>
<td></td>
</tr>
<tr>
<td>310030015</td>
<td>Marais du Prédembourg, Bois du Puythouck et Pont à Roseaux</td>
<td></td>
</tr>
<tr>
<td>310013305</td>
<td>Marais de la Briqueiterie et lac de Téteghem</td>
<td></td>
</tr>
<tr>
<td>310007022</td>
<td>Dunes de Guyvelde</td>
<td></td>
</tr>
<tr>
<td>310007009</td>
<td>Lac d’Armbouts-Cappel</td>
<td></td>
</tr>
<tr>
<td>ZNIEFF de type 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>310014024</td>
<td>Plaine maritime flamande entre Watten, Loon-Plage et Oye-Plage</td>
<td></td>
</tr>
</tbody>
</table>

Liste des ZNIEFF à proximité du site des Bancs des Flandres
Lancé en 1982, l’inventaire des Zones Naturelles d’Intérêt Ecologique Faunistique et Floristique (ZNIEFF) a pour objectif d’identifier et de décrire des secteurs présentant de fortes capacités biologiques et un bon état de conservation. On distingue 2 types de ZNIEFF :

- les ZNIEFF de type I : secteurs de grand intérêt biologique ou écologique ;
- les ZNIEFF de type II : grands ensembles naturels riches et peu modifiés, offrant des potentialités biologiques importantes.

2.2. Inventaires marins

<table>
<thead>
<tr>
<th>Producteur de données</th>
<th>Programme</th>
<th>Distance des Bancs des Flandres</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAMP</td>
<td>Programme CARTHAM</td>
<td>Site inclus</td>
</tr>
<tr>
<td></td>
<td>Programme PACOSS</td>
<td>Site inclus</td>
</tr>
<tr>
<td>IFREMER</td>
<td>Programme CHARM notamment</td>
<td>Site inclus en partie</td>
</tr>
<tr>
<td>Station marine de Wimereux et Laboratoire d’Océanologie et de Géosciences</td>
<td>Programme de recherches et de suivi</td>
<td>Site inclus en partie, essentiellement littoral ou avant côte</td>
</tr>
<tr>
<td>GPMD</td>
<td>Programme de surveillance et de suivi activités de dragage/clapage</td>
<td>Site inclus en partie, essentiellement littoral, avant côte et zones de clapage</td>
</tr>
<tr>
<td>Associations naturalistes</td>
<td>Avifaune Mammalofaune</td>
<td>Site inclus en partie, essentiellement littoral</td>
</tr>
</tbody>
</table>

3 Protections en faveur du patrimoine naturel

Les abords des Bancs des Flandres bénéficient de nombreuses mesures réglementaires attestant de la diversité et de la qualité du patrimoine naturel sur un territoire fortement marqué par la zone industrialo-portuaire.
SITUATION GENERALE

<table>
<thead>
<tr>
<th>code</th>
<th>Nom du site</th>
<th>Distance des Bancs des Flandres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natura 20000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pSIC maritime</td>
<td>FR3102002 Bancs des Flandres</td>
<td>OSPAR</td>
</tr>
<tr>
<td>ZPS maritime</td>
<td>FR3112006 Bancs des Flandres</td>
<td>FR7600036</td>
</tr>
<tr>
<td>SIC terrestre</td>
<td>FR3100474 Dunes de la Plaine maritime flamande</td>
<td>Limitrophe</td>
</tr>
<tr>
<td>ZSC maritime</td>
<td>BEMNZ0001 Vlaamsebanken</td>
<td>Limitrophe</td>
</tr>
<tr>
<td>ZPS maritime</td>
<td>BEMNZ0002 ZPS 1</td>
<td>RAMSAR</td>
</tr>
<tr>
<td>ZPS maritime</td>
<td>BEMNZ0003 ZPS 2</td>
<td></td>
</tr>
<tr>
<td>SIC terrestre</td>
<td>FR3100474 Platier d’Oye</td>
<td>A proximité</td>
</tr>
<tr>
<td>ZSC terrestre</td>
<td>BE2500001 Duingebiedeninclusieflijkzermonding en Zwin</td>
<td></td>
</tr>
<tr>
<td>ZPS maritime</td>
<td>BE2500121 ZPS terrestre (Belgique)</td>
<td></td>
</tr>
</tbody>
</table>

Réserve naturelle

<table>
<thead>
<tr>
<th>RNN86</th>
<th>Reserve naturelle nationale du Platier d’Oye</th>
<th>A proximité</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNN19</td>
<td>Reserve naturelle nationale de la Dune marchand</td>
<td>Limitrophe</td>
</tr>
</tbody>
</table>

Terrain du Conservatoire du Littoral

FR1100144	Dune Dewulf	Limitrophe
FR1100130	Dune du perroquet	Limitrophe
FR1100143	Dune Marchand	Limitrophe
FR1100142	Dune fossile de Guyvelde	Limitrophe
FR1100936	Les Salines de Fort Mardyck	Limitrophe

Aires marines protégées à proximité du site des Bancs des Flandres

Les Bancs des Flandres ne portent pas d’Arrêté de protection de biotope (APB), ni de Reserve de chasse maritime sur le DPM et ni de Réserve halieutique.

4 Protection du paysage

Valorisation du patrimoine dans CAHIER ACTIVITES RECREATIVES ET DE LOISIRS

Le territoire dunkerquois ne compte aucun site inscrit, sous forme de Zones de Protection du Patrimoine Architectural, Urbain et Paysager (ZPPAUP), ou d’Aires de Mise en Valeur de l’Architecture et du Patrimoine (AMVAP). Les sites inscrits ont pour objet la sauvegarde de formations naturelles, de paysages, de villages et de bâtiments anciens et la préservation contre toute atteinte grave (destruction, altération, banalisation...). Cette mesure entraîne, pour les maîtres d’ouvrages, l’obligation d’informer l’administration de tous projets de travaux de nature à modifier l’état ou l’aspect du site quatre mois au moins avant le début de ces travaux.

Le classement comme monument historique est une mesure d’utilité publique visant à protéger un édifice remarquable de par son histoire ou son architecture. Cette reconnaissance d’intérêt public concerne plus spécifiquement l’art et l’histoire attachée aux monuments.

Sur le littoral dunkerquois, plusieurs monuments sont protégés au titre des «monuments historiques », notamment :

- les immeubles et maisons particulières de type « art déco » et villas balnéaires de la fin XIXème et début XXème
- la Tour de Leughenaer et l’établissement de bains
- L’Hôtel de l’armateur et le Bâtiment de la subdivision des Phares et Balises
- les immeubles et maisons particulières de type « art déco » et villas balnéaires de la fin XIXème et début XXème
- les beffrois
- les formes de radoub 3 et 5 et les ruines de l’écluse de Mardyck
- la Tour de Leughenaer et l’établissement de bains
- les édifices religieux
- le phare du Risban et le feu de Saint pol.
La qualité des eaux et des sédiments est un facteur déterminant dans le fonctionnement des milieux. C'est un paramètre clé de l’état de conservation des espèces et habitats d’intérêt communautaire. La bonne qualité du milieu constitue un enjeu fort, qui dépasse largement le cadre de Natura 2000, dédié au programme naturel. Il relève de programmes complémentaires.

D’autre part, lors des projets soumis à évaluation des incidences, le service instructeur doit veiller que les éventuels impacts sur la qualité des eaux et des sédiments n’altèrent pas l’état de conservation des espèces et habitats.

1 Les directives européennes

Depuis les années 1970, la politique publique de l’eau s’inscrit dans un cadre européen. La qualité de l’eau a en effet toujours été une préoccupation dans la politique de l’Union Européenne. La législation communautaire s’est d’abord intéressée aux usages de l’eau (eau potable, baignade, pisciculture, conchyliculture), puis à la réduction des pollutions (eaux usées, nitrates d’origine agricole). La législation européenne comprend notamment trois directives majeures déclinées en France.

SITUATION GÉNÉRALE

<table>
<thead>
<tr>
<th>Espace</th>
<th>DCE</th>
<th>DCSMM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Masse d’eau jusqu’à 1 mille nautiques. (12 milles nautiques pour le volet chimique)</td>
<td>Masse d’eau du DPM jusqu’à la limite de la ZEE</td>
</tr>
<tr>
<td>Objectifs de la directive</td>
<td>– Prévenir de toute dégradation supplémentaire ; préserver et améliorer de l’état des masses d’eau et des écosystèmes aquatiques ;</td>
<td>– Protéger et conserver le milieu marin, prévenir sa détérioration et restaurer des écosystèmes dégradés ;</td>
</tr>
<tr>
<td></td>
<td>– Promouvoir leur utilisation durable ;</td>
<td>– Réduire les apports dans le milieu marin afin d’éliminer progressivement la pollution ;</td>
</tr>
<tr>
<td></td>
<td>– Réduire les rejets de substances prioritaires, arrêter les rejets pour les substances dangereuses ;</td>
<td>– Maintenir des pressions sur les écosystèmes à des niveaux compatibles avec le bon état écologique [et] permettant l’utilisation durable des biens et des services marins ;</td>
</tr>
<tr>
<td></td>
<td>– Réduire la pollution des eaux souterraines</td>
<td>– Veiller à la cohérence des différentes politiques sur le milieu marin.</td>
</tr>
<tr>
<td></td>
<td>– Atténuer les effets des inondations et des sécheresses.</td>
<td></td>
</tr>
</tbody>
</table>

Déclinaison en France et contenu du document

<table>
<thead>
<tr>
<th>Schéma Directeur d’Aménagement et de Gestion des Eaux (SDAGE) :</th>
<th>Plan d’action pour le milieu marin (PAMM) :</th>
</tr>
</thead>
<tbody>
<tr>
<td>– Orientations permettant de satisfaire les grands principes de la DCE ;</td>
<td>– Evaluation initiale de l’état écologique du milieu marin et de l’impact des activités humaines ;</td>
</tr>
<tr>
<td>– Objectifs de qualité et de quantité à atteindre pour chaque masse d’eau (dont bon état écologique et chimique des eaux de surface) ;</td>
<td>– Définition du bon état écologique pour chaque SRM ;</td>
</tr>
<tr>
<td>– Mesures de gestion pour atteindre ces objectifs-</td>
<td>– Objectifs environnementaux pour parvenir au bon état écologique (et indicateurs associés) ;</td>
</tr>
<tr>
<td>Le SDAGE est décliné localement, en Schéma d’Aménagement et de Gestion des Eaux (SAGE)</td>
<td>– Programme de surveillance de l’état du milieu marin ;</td>
</tr>
<tr>
<td></td>
<td>– Programme de mesures de gestion pour parvenir à un bon état écologique</td>
</tr>
</tbody>
</table>

Échéance

<table>
<thead>
<tr>
<th>2015</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 bassins hydrographiques en France. Le site est dans le bassin Seine-Normandie</td>
<td>4 sous-régions marines (SRM) en France. Le site est dans la SRM Manche-Mer du Nord</td>
</tr>
</tbody>
</table>

Application sur Bancs des Flandres

<table>
<thead>
<tr>
<th>Masse d’eau côtière :</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>– Frontière belge – Malo (FRAC01)</td>
<td>-</td>
</tr>
<tr>
<td>– Malo – Grîz nez (FRAC02)</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Masse d’eau de transition :</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>– Port de Dunkerque (FRAT04)</td>
<td>-</td>
</tr>
</tbody>
</table>

SDAGE Artois-Picardie et SAGE de l’Aa

Eléments de synthèse DCE et DCSM

1.1. **SDAGE Artois Picardie**

Le SDAGE du bassin Artois-Picardie, pour la période 2010 – 2015 a été approuvé le 20 novembre 2009. Il vise la gestion durable de la ressource en eau et fixe les objectifs à atteindre sur la période considérée. Ses orientations fondamentales sont les suivantes :

- Gestion qualitative des milieux aquatiques,
- Gestion quantitative des milieux aquatiques,
- Gestion et protection des milieux aquatiques,
- Traitement des pollutions historiques,
- Instauration de politiques publiques plus innovantes pour gérer collectivement un bien commun.

1.2. SAGE Delta de l’AA

Approuvé en mars 2010, le SAGE du Delta de l’Aa est un document de planification, déclinaison du SDAGE Artois-Picardie au niveau du sous-bassin de l’Aa. Cinq orientations stratégiques ont été définies :

- garantir l’approvisionnement en eau,
- diminuer la vulnérabilité aux inondations du territoire des waterlingues et de la vallée de la Hem,
- reconquérir des habitats naturels (protection, gestion, entretien),
- poursuivre l’amélioration de la qualité des eaux continentales et marines,
- communiquer et sensibiliser aux enjeux de l’eau et de ses usages auprès de tous les publics.

1.3. PAMM SRM Manche - Mer du Nord

Objectifs généraux du PAMM SRM MMN
Les enjeux de ces deux directives sont de fixer des objectifs à atteindre en termes de qualité chimique et écologique des eaux, que ce soit pour les eaux de transition ou les eaux marines.

2 Convention OSPAR

OSPAR est considérée comme étant l’instrument le plus complet et productif pour gouverner la protection de l’environnement marin de l’Atlantique Nord-Est. Cette convention possède 5 axes stratégiques :

- Lutte contre l’eutrophisation ;
- substances dangereuses ;
- substances radioactives ;
- Industries d’exploitation off-shore gaz et pétrole ;
- Biodiversité marine (ajoutée en 1998).

La convention OSPAR est découpée géographiquement en 5 zones. Désigné en 2012, le site des Bancs des Flandres se situe dans la zone II d’OSPAR. Le programme d’évaluation et de surveillance commun à l’ensemble des sites OSPAR n’a pas encore été mis en place sur les Bancs des Flandres.

3 Réseau de surveillance de la qualité du milieu marin

Différents réseaux de contrôle et de surveillance permettent d’évaluer la qualité des eaux et des milieux sur le littoral français, et plus localement sur le littoral dunkerquois. Cette évaluation est réalisée sur des matrices variables (eau, sédiments et biotes) et basée sur quatre réseaux de mesures de l’IFREMER : le REMI, le REPHY, ROCCH et le RSN. A ces quatre composantes, s’ajoutent trois autres sources de données : le REPOM, le suivi de la qualité des eaux par l’ARS, et les données propres du GPMD. L’ensemble permet de dresser un bilan global de la qualité des eaux et des sédiments dans et en périphérie du site des Bancs des Flandres.
De manière plus générale, l’IFREMER coordonne, sur l’ensemble du littoral métropolitain, la mise en œuvre de réseaux d’observation et de surveillance de la mer côtière. Ces outils de collecte de données sur l’état du milieu marin répondent à deux objectifs : acquérir des séries de données nourrissant les programmes de recherche visant à mieux comprendre le fonctionnement des écosystèmes côtiers et à identifier les facteurs à l’origine des changements observés dans ces écosystèmes ; et servir des besoins institutionnels en fournissant aux pouvoirs publics des informations répondant aux exigences de la Directive Cadre sur l’Eau (DCE), des conventions régionales marines (OSPAR et Barcelone) mais aussi de la réglementation sanitaire relative à la salubrité des coquillages des zones de pêche et de production conchylicoles. Les bulletins régionaux annuels contiennent une synthèse et une analyse des données collectées par les réseaux pour les différentes régions côtières. Le dispositif comprend le réseau de surveillance de la flore et de la faune benthique marine (REBENT) qui se met en place progressivement.

<table>
<thead>
<tr>
<th>Opérateur</th>
<th>Fréquence</th>
<th>Nombre de points</th>
<th>Objectifs</th>
<th>Paramètres suivis</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROCCH : Réseau d’Observation de la Contamination Chimique</td>
<td>1 fois/an</td>
<td>1 station : « RNO MV Oye » (001-P-104)</td>
<td>Evaluation des niveaux et de contamination ainsi que surveillance des effets biologiques des contaminants sur coquillage "Mussel Watch".</td>
<td>Coquillage : 3 métaux : Cd, Hg, Pb Dioxines PCB HAP</td>
</tr>
<tr>
<td>IFREMER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depuis 2008 (ex-RNO depuis 1974)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IFREMER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(depuis 1998)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REPHY : réseau de surveillance du phytoplancton et des phycotoxines</td>
<td>2 fois/mois</td>
<td>2 points : « Oye » (001-P-022) et « SRN Station 1 Dunkerque » (001-P-015)</td>
<td>Suivi spatio-temporel des flores phytoplanctoniques et des phénomènes phycotoxiques associés</td>
<td>Biomasse, Abondance Phytoplancton toxique</td>
</tr>
<tr>
<td>IFREMER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(depuis 1984)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

En 2007, le GPMD a fait réaliser une campagne REMI sur 11 stations entre Oye-Plage et l’Épi Est. Elles ont été échantillonnées.
Situation Générale

SRN : suivi régional des nutriments
- **IFREMER**
 - 1 station : « SRN station 1 Dunkerque » (001-P-015)
 - 1 fois/ mois sauf 2 fois/ mois entre mars et juin
 - Evaluation de l'influence des apports continentaux sur le milieu marin et leurs conséquences sur d'éventuels processus d'eutrophisation
 - T°, salinité, nutriments (N, P, Si), MES, chlorophylle, Phytoplancton, Matière organique particulaire.

REPOM : Réseau national de surveillance de la qualité de l'eau et des sédiments des ports maritimes.
- **IFREMER CQEL**
 - 4 Stations : Avant-Port Ouest (C41), Basin maritime (C42), Avant-Port Est (C44), Chenal Trystram (P23)
 - Eau : 1 fois/trimestre à PM de coef 60-80
 - Sédiments : 1 fois/an
 - Contrôle la qualité physico-chimique et bactériologique des eaux et des sédiments portuaires
 - Le CETMEF a publié un bilan 1997-2006.

Radioéléments
- **IFREMER IRSN EDF-CNPE Gravelines**
- Consultable sur www.mesure-radioactivite.fr
- Radioéléments au débouché du CNPE de Gravelines, au large, Grand Fort Philippe et Oye-plage.
- Radioéléments dans mollusques, algues, poissons et sédiments.

Réseau DCE
- **Agence de l'eau Artois Picardie**
- Masse d'eau côtière :
 - Frontière belge – Malo (FRAC01)
 - Malo – Griz nez (FRAC02)
 - 1 station pour l'état chimique : « SRN station 1 Dunkerque »
 - 1 station pour l'état écologique : « RNO MV Oye »
 - Masse d'eau de transition :
 - Port de Dunkerque (FRAT04)
 - 1 station pour l'état chimique : « DCE Eau Port de Dunkerque »
 - 1 station pour l'état écologique : « DCE MV Port de Dunkerque »
 - Evaluation de l'état des masses d'eau côtières, eau de transition et eaux superficielles
 - Année de référence : 2009

Qualité des eaux de baignade
- **ARS**
 - 9 stations de Grand Fort Philippe
 - 1 fois par mois en période estivale
 - Classement bactériologique des eaux de baignades

Qualité des eaux et plages pour la baignade
- **GPMD**
 - 2 stations : Braek et Malo
 - 1 fois par mois en période estivale lors de BM de VE
 - Classement bactériologique des eaux de baignades
 - Classement physico-chimique des plages selon
 - Bactériologie des eaux
 - Physico-chimie (NTK, COT, P)
 - Bactériologie des eaux
 - Biotest
 - 8 Métaux, 7 PCB, 16 HAP
SITUATION GENERALE

| Surveillance et état des plages entre l’avant port Ouest et frontière belge | GPMD | 8 radiales de Oye à De Panne (haut/milieu/bas de plage) 1 fois par an en vivée-eau | Evaluation de l’influence des opérations de clapage ? | Sédimentologie
Physico-chimie (NTK, COT, P)
Benthos (abondance, diversité, I2EC) |
| --- | --- | --- | --- | --- |
| **Bilan annuel des dragages (BAD)** | GPMD | Depuis 2008, le réseau de suivi est structuré dans le cadre du PSSE du SDD du GPMD 120 à 150 stations échantillonnées selon l’année :
- Bassins portuaires Port Est et Port Ouest
- Chenal extérieur
- points par zones d’immersion + banc du Hills
Sédiments : 1 fois par an
Eau : l’ensemble du territoire n’est pas étudié chaque année renouvellement par tiers.
Virologie/bactériologie
8 Métaux, 7 PCB, 16 HAP
TBT, Biotest
Ecotoxicologie des moules, poissons, benthos I2EC
Analyses volontaires non obligatoires par la réglementation: BTEX, pesticides organochlorés, dioxines et furanes, cyanures et phénols, radioéléments, test dangerosité H14
SEQ-Eau |
| **Suivis dans le cadre des projets** | GPMD | Aménagement d’une plate-forme d’accueil d’un terminal méthanier (AP 09/04/2010 et AP 31/07/2009)
Extension terminal multivrac (AP 18/09/2009)
Rechargement digue des alliés (AP 04/10/2013)
Extension quai de Flandres (04/05/2001)
Extension terminal SGD (AP 15 février 2010) | Notamment :
Sédimentologie
Physico-chimie Métaux
Benthos
Halieutique
Avifaune
Mammalofaune
Biotest
Ecotoxicologie des moules, poissons |

Réseaux de suivis et surveillance sur le territoire des Bancs des Flandres

4 Politiques environnementales du Port de Dunkerque

Les mesures en faveur de l’amélioration de la qualité du milieu marin sont inscrites dans le Plan d’Aménagement et de développement durable (PA2D) du GPMD, qui fixe les orientations stratégiques et les objectifs de gestion durable du territoire portuaire pour les années à venir.
4.1. Schéma Directeur des Dragages (SDD) du Port de Dunkerque

Le Schéma Directeur des Dragages (SDD) permet au GPMD d’engager ces propres opérations de dragage selon des modes opératoires « cadres » dans le respect des textes de loi d’une part et de la préservation des milieux naturels d’autre part. Le SDD a été le premier schéma à paraître en 2006. Il a par la suite été révisé et mis à jour en 2010 puis 2012 pour intégrer les évolutions réglementaires survenues en matière de dragage. Cette dernière version du SDD offre à Dunkerque-port la possibilité de :

- Immerger les vases immergeables ;
- Valoriser les sables au travers de la reconstitution du Domaine Public Maritime (DPM) et de la lutte contre l’érosion littorale illustrées récemment par les rechargements en sables de l’estran devant la digue de Ruytingen lors des travaux du terminal méthanier, et de l’estran devant la digue des Alliés pour réduire les risques de submersion marine ;
- Gérer et valoriser les vases non immergeables au travers de différents types d’ouvrages réalisés sur le territoire portuaire tels qu’un éco-modelé paysager, une route et des blocs béton, réalisés sur la période 2009-2013. Cette valorisation n’est possible que si les sédiments traités répondent aux critères de non dangerosité au sens du décret du 18 avril 2002 (tests H1 à H15).

La mise en œuvre du SDD a permis à Dunkerque-Port de faire entrer la gestion des sédiments, et plus particulièrement des vases non immergeables dans l’ère de l’économie circulaire.

Les opérations de dragage de Dunkerque-Port sont gérées conformément à la réglementation et fixe les grandes orientations en matière de filière de gestion des sédiments selon leur nature et leur qualité chimique. Le SDD est avant tout est un outil stratégique dont le rôle est de fixer des objectifs environnementaux pour un bon état des milieux.

![Objectifs fixés en 2012 par Dunkerque-Port dans le cadre de son SDD (IDRA Environnement, 2012)](image_url)

Ce D’autre part, le SDD a été renforcé en 2010 par un outil opérationnel et évolutif : le Plan de Gestion Opérationnel des Dragages (PGOD), offrant au port toutes les modalités de mise en œuvre de ses filières de gestion des sédiments selon leur nature et leur qualité physico-chimique et écotoxicologique. Le document regroupe les modes opératoires et des protocoles opérationnels pour la bonne conduite des dragages quels que soient la nature, la composition et les volumes des sédiments à draguer. Il permet d’élaborer et de mettre en pratique des solutions appropriées et opérationnelles pour la gestion des produits de dragage hors normes.
Nature, volumes et filières de gestion utilisées pour les sédiments du GPMD inscrit dans son PGOD

Le PGOD définit aussi le Plan de Surveillance et de Suivi Environnemental (PSSE) du port pour tout le volet maritime. Ce PSSE est réadapté dès que nécessaire pour prendre en compte les évolutions réglementaires et anticiper les évolutions pressenties en termes de paramètres à suivre. À ce jour, des réflexions sont en cours pour un suivi de molécules supplémentaires suite à la parution de l’évaluation initiale du PAMM en 2012. Ce sont environ 1000-1500 analyses physiques/an, 5000-5500 analyses chimiques/an, 100 analyses bactériologiques/an, 1 étude peuplement benthique/3 ans.

Pierre angulaire dans le schéma décisionnel du devenir des sédiments, la caractérisation qualitative des matériaux est réalisée au cours de l’année précédant les opérations de dragage. Le plan d’échantillonnage est évolutif et dépend du programme de dragage de l’année suivante.

Le PGOD est donc le document destiné à asseoir la logique de décision de pratiques respectueuses de l’environnement. Il est validé au travers de l’arrêté d’autorisation préfectorale décennale des dragages d’entretien datant du 9 mars 2012 : « Le volume à draguer autorisé annuellement est de 6 500 000 m³ dont

2 - Les molécules possédant des seuils réglementaires (N1 / N2) définis par arrêté ministériel :
• métaux et métalloïdes (8), PCB (7) et dérivés (arrêté ministériel du 9 août 2006),
• HAP (seuils non réglementaires en 2011 => seuils provisoires pris en considération),
• TBT (arrêté ministériel décembre 2010).
- Les autres molécules à analyser systématiquement selon une recommandation nationale (instruction technique) : aluminium, carbone organique, azote, phosphore, granulométrie, densité, matières sèches, bactéries fécales,
- Les molécules supplémentaires, dont certaines sont imposées par l’arrêté préfectoral de 2012 :
• Pesticides organochlorés, phénol, fer ;
• BTEX, dioxines / furannes, phénols, cyanures, virologie, vibrions, radioéléments et les autres substances prioritaires définis à l’annexe X de la directive 2000/60/CE.
1 200 000 m3 pour le port Est et 5 300 000 m3 pour le port Ouest. Ce volume représente environ 5 800 000 m3 de vases immergeables, 500 000 m3 de sables propres utilisés pour le rechargement des unités hydrosédimentaires ou la commercialisation et 150 000 m3 de vases non immergeables gérées à terre ».

Il apporte de souligner que le GPMD dispose aussi d’un Plan de gestion opérationnel des matériaux (PGOM) qui définit la destination des différents volumes dragués évoquée dans les différents dossiers d’aménagement du projet stratégique 2014-2018.

Enfin, il faut préciser que l’ensemble des bassins du GPMD n’est pas dragué annuellement de façon automatique mais bien en fonction du besoin. Afin de le définir, des campagnes de sondages bathymétriques sont réalisés par les services du port avant chaque opération de dragage.

1 Le GPMD détermine en fonction des résultats des échantillons, la filière de gestion des sédiments qu’il souhaite draguer conformément aux prescriptions des différents arrêtés préfectoraux autorisant ces opérations. Ainsi, dans le cas où une série d’analyses indiquerait qu’il n’y a pas de dépassement du niveau N1 sur un secteur d’étude, d’emblée, on considère que l’immersion en mer de ces sédiments est jugé neutre d’un point de vue environnemental. Il n’y a pas automatiquement recours dans ce cas de figure à un test d’écotoxicité. Dans le cas contraire, et a minima, un test d’écotoxicité doit être réalisé pour vérifier la toxicité des sédiments. Si celui-ci révèle un niveau de toxicité tout au plus faible, l’immersion des sédiments ou leur valorisation à terre est possible. Si plusieurs paramètres dépassent le niveau N2, la toxicité des sédiments peut être évaluée à un niveau d’emblée moyen à fort. Dans ce cas, la seule filière de gestion envisageable correspond au dépôt à terre.
4.2. Schéma Directeur d’Assainissement (SDA) du Port de Dunkerque

Le Schéma Directeur d’assainissement (SDA) également établi en 2010 a pour objet de définir les actions que le port doit mener pour une mise en conformité des réseaux d’assainissement portuaires et fixe des objectifs à atteindre en termes de rejets, afin de réduire la contamination des eaux portuaires.

Ce schéma concerne les 150 rejets d’eaux pluviales répartis sur les ports Est et Ouest, et les 35 rejets spécifiques liés aux ICPE de son territoire.

Il veille, avec le SDD, à l’amélioration de la qualité des milieux aquatiques et notamment de la qualité des eaux portuaires en lien avec les objectifs de qualité fixés par la DCE et le SDAGE.

Le plan d’actions se décline sous plusieurs angles distincts visant à réduire les sources de pollution dans les eaux de transition et de fait, dans les eaux littorales. Parmi ces actions peuvent être citées :

- La déconnexion des rejets d’eaux usées du réseau d’assainissement gérant les eaux pluviales ;
- La mise en œuvre de systèmes de traitement non collectifs des eaux usées ;
- Gestion des eaux pluviales par infiltration dans les sols (noues d’infiltration) là où c’est possible plutôt que par rejet dans le milieu naturel (bassins ou watergangs) pour les nouveaux projets d’aménagement ;
- Continuité de la mise aux normes techniques des installations portuaires débutées en 2005 ;
- Mise en place de convention de rejets avec les industriels (pour les ICPE et les non ICPE) présents sur territoire portuaire. En 2014, 60 conventions sont signées.

4.3. Plan de gestion du trait de côte du Port de Dunkerque

Un plan de gestion du trait de côte est actuellement en cours de définition à l’échelle de l’Unité de gestion sédimentaire n°4 (UG4), dont le GPMD a la charge. Il a pour objectif de déterminer les zones littorales présentant des taux d’érosion et de recul problématique et de proposer un plan à court, moyen et long termes des actions à mener sur le territoire portuaire pour lutter contre cette érosion et les risques de submersion marine associés.

Ce plan est également un des objectifs de l’arrêté préfectoral d’autorisation décennale datant de 2012 pour les dragages d’entretien du port et l’immersion des matériaux sains. L’article 15 de cet arrêté stipule que le plan de gestion devra être finalisé à l’horizon 2017 et qu’il devra par la suite faire l’objet de rapports bilans annuels.

A ce jour, des études d’envergure (thèse CIFRE co-financée par Dunkerque-port, études de modélisations d’envergure pour évaluer l’évolution du trait de côte à long terme) sont lancées pour établir des cartographies des zones à enjeux. Ces études préalables reposent notamment sur des modélisations du transit sédimentaire littoral intégrant les rechargements progressifs de différentes unités de gestion hydro-sédimentaire de la façade maritime Dunkerquoise UG3, UG4 et UG5.
5 Synthèse Inventaires/Protection/Classement/Outils de gestion
MILIEU PHYSIQUE

1 Contexte géomorphologique

1.1. Géomorphologie terrestre

L’altitude de la plaine de Flandre est située entre 5 et 10 m le long de la côte et décroît graduellement vers l’intérieur (+ 2 m à -2 m). Entre Calais, Dunkerque et St Omer, l’altitude est faible et située sous le niveau de la mer. Une zone de polders se trouve donc localisée dans le triangle délimité par ces trois agglomérations.

Le littoral dunkerquois rectiligne et orienté OSO-ENE est, comme l’ensemble des côtes françaises, belges et hollandaises du sud de la Mer du Nord, principalement bordé de dunes littorales d’édification récente et de larges plages sableuses.

1.2. Géomorphologie sous-marine

Carte : Géomorphologie du site des Bancs des Flandres

Depuis le large vers la côte, quatre bancs bien isolés sont identifiés : l’Out Ruytingen et l’In Ruytingen, le Dyck occidental et le Dyck central. Viennent ensuite neufs bancs plus ou moins parallèles disposés en quatre alignements, qui constituent les Bancs des Flandres. On distingue l’In Ratel, le Buiten Ratten, le Breedt, le Haut-Fond de Gravelines, le Smal, le Snow, le banc de Mardyck, le Break et le Hills. Ces structures sédimentaires sont coalescentes et le sommet des bancs les plus côtiers est émergé à marée basse. Ce système alternant bancs et chenaux est d’une importance fondamentale dans le fonctionnement de l’écosystème côtier du Sud de la Mer du Nord, notamment pour les frayères et les nourriceries de poissons.
Dans le cadre du programme Interreg PANACHE, le GPMD a effectué une cartographie des fonds à partir des données bathymétrique à sa disposition, issues de ses propres levés et de ceux du SHOM. La profondeur maximale atteint 38 m.
SITUATION GENERALE

Les bancs sont des ondulations sous-marines de grandes longueur et largeur (plusieurs kilomètres sur plusieurs centaines de mètres), d’assez grande amplitude (plusieurs dizaines de mètres de hauteurs), allongé dans le sens des courants de marée dominant et à peu près parallèles au rivage. Ils sont assez stables à moyen terme (PANACHE⁴, 2014).

Les dunes dites hydrauliques sont des ondulations sableuses de plus petite taille (quelques dizaines de mètres de long, quelques mètres de haut) que l’on trouve aussi bien sur les bancs que dans les zones plus profondes. Ces dunes sont très mobiles à court terme. Elles se déplacent sous l’influence des courants de marée. La crête de ces dunes est à peu près perpendiculaire aux courants de marée.

Les mégarides sont des figures sédimentaires plus petites et plus mobiles encore (quelques mètres de long, quelques dizaines de centimètres de haut), liées aux courants de marée et aux vagues. On ne peut les distinguer sur les coupes bathymétriques.

2 Contexte climatique et météorologique

La région dunkerquoise est caractérisée par une pluviométrie relativement homogène dans l’année, avec une hauteur annuelle moyenne des précipitations 697 mm (Normales Météo-France 1991-2010, station du Sémaphore du port de Dunkerque). Témoignant d’une influence océanique forte, les températures varient sur l’année avec une saison plus chaude entre mai et octobre (températures supérieures à 10°C), et une saison froide entre novembre et avril (températures inférieures à 10°C).

Rose des vents à partir de données horaires 1996-2012 à la station du Sémaphore du port de Dunkerque (Données Météo-France, Cohen, 2013)

⁴ PANACHE est un projet franco-britannique, financé par le programme européen INTERREG IV A Manche. Le projet vise à une meilleure protection de l’environnement marin de la Manche par la mise en réseau des aires marines protégées existantes. Commencé en juillet 2012, il se terminera en juin 2015. Il comporte 5 objectifs :

- Étudier la cohérence écologique du réseau des aires marines protégées.
- Mutualiser les acquis en matière de suivi de ces espaces, partager les expériences positives.
- Consolider la cohérence et encourager la concertation pour une meilleure gestion des aires marines protégées.
- Accroître la sensibilisation générale aux aires marines protégées : instaurer un sentiment d’appartenance et des attentes communes en développant des programmes de sciences participatives.
- Instaurer une base de données SIG publique.
Le régime océanique engendre des vents dominants de Sud-Ouest. Avec une fréquence moindre, on note des vents du Nord-Est, venant de la Mer du Nord. Ces deux types de vents sont parallèles au littoral et ont une incidence plus ou moins marquée, selon leur direction et leur intensité, sur le transit sédimentaire et les variations morphologiques de l’estran et du trait de côte. C’est pendant la période hivernale que les vents les plus forts sont les plus fréquents. Parfois, ils peuvent dépasser 100 km/h.

3 Contexte hydrodynamique

3.1. Marée

Au niveau du détroit du Pas de Calais, la marée est de type semi-diurne, c'est-à-dire marquée par deux pleines mers et deux basses mers par jour, qui résulte de la superposition de deux ondes de marée provenant de l’ouest (par la Manche) et du nord (par la Mer du Nord).

A Dunkerque, le régime de marée est de type macrotidal. La valeur du marnage de vive-eau (coef. 95) est de 5,45 m et 3,50 m lors du marnage de morte-eau (coef. 45).

<table>
<thead>
<tr>
<th>Marée</th>
<th>Hauteur en m par rapport au 0 hydrographique (0 m CM)</th>
<th>Hauteur en m par rapport au 0 géographique (0 m NGF)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Plaine mer</td>
<td>Basse mer</td>
</tr>
<tr>
<td>Vive-eau exceptionnelle</td>
<td>Coefficient 120</td>
<td>6,48</td>
</tr>
<tr>
<td>Vive-eau moyenne</td>
<td>Coefficient 95</td>
<td>6,05</td>
</tr>
<tr>
<td>Morte-eau moyenne</td>
<td>Coefficient 45</td>
<td>5,00</td>
</tr>
</tbody>
</table>

| Hauteur d’eau en fonction des coefficients de marée (en m Cote Marine CM) au niveau de la station du Marégraphe du port de Dunkerque (SHOM, 2012)

Les marées sont asymétriques. Le flot (marée montante), dirigé vers l’Est-Nord Est, est plus court que le jusant (marée descendante), dirigé vers l’Ouest-Sud Ouest d’environ deux heures. La basse mer (BM) se situe environ 5 heures avant la pleine mer (PM).

3.2. Surcote et décote

A la fluctuation des niveaux liés à la marée, peuvent s’ajouter des décotes et des surcotes dues à des conditions météorologiques particulières, notamment l’effet des vents et de la pression atmosphérique.

Les surcotes, surélévations temporaire du niveau marin, sont des phénomènes de courte durée (généralement inférieure à une marée). Elles ont un caractère saisonnier très marqué puisqu’elles sont le plus fréquemment observées de septembre à mars.

Différent travaux (eg. Pirazzoli, 2007) ont essayé de dresser une cartographie des surcotes sur le littoral français selon plusieurs périodes de retour. Sur Dunkerque, la surcote annuelle théorique est estimée à 1,04 m, la décennale à 1,49 m et la centennale à 1,94 m (Clique, 1986). Plus récemment, ces périodes de retour ont été actualisées à 1,80 m (décennale), 2,15 m (cinquantennale) et 2,25 m (centennale) (Maspataud et al., 2012). Les côtes dunkerquoises ont connues par le passé des événements extrêmes où la surcote marine a pu atteindre 1,55 m lors de la tempête du 01 mars 1949 et 2,4 m lors de celle du 01 février 1953, causée par un vent de Nord couplé à une marée de vives-eaux.
Le phénomène de décote, abaissement temporaire du niveau marin, a été quant à lui évalué à 0,86 m (décennale) et 1,10 m (centennale).

En outre, ces hauts niveaux d’eau, associés à des coups de vent même modérés, jouent un rôle déterminant dans la morpho-dynamique et l’évolution, notamment érosive, des plages et des dunes (Vasseur & Héquette, 2000 ; Clabaut et al., 2000 ; Ruz & Meur-Férec, 2004 ; Chaverot, 2006 ; Ruz et al., 2009).

3.3. Courants de marée

Les cartes établies heure par heure par le SHOM (2012) montrent que la Manche Orientale et le Sud de la Mer du Nord sont caractérisés par des courants forts majoritairement orientés Est-Nord-Est lors du flot et Ouest-Sud-Ouest au jusant. Au droit de Dunkerque, caractérisés par des études et levés du SHOM, IFREMER, ULCO, GPMD et DHI, ils sont parallèles à la côte. Leur vitesse au large est supérieure à 1 m/s en surface (maximum 1,5 m/s ; données SHOM), environ de 0,8 m/s face aux avant-ports Ouest et Est (maximum 1,35 m/s; données GPMD, données DHI) mais inférieure à 0,5 m/s en milieu de plage (Héquette et al., 2009). On assiste à un gradient longitudinal à la côte des courants. D’autre part, les courants ont une vitesse plus faible sur les bancs alors qu’au niveau des passes et des chenaux leur intensité augmente (Vicaire 1991 ; Corbau, 1995 ; Hemdane, 2006 ; Héquette et al., 2008 ; Bertier, 2009 ; SHOM, 2012 ; Cartier 2011).

L’orientation des bancs ainsi que la ligne de rivage canalisent les courants (Sogreah, 2008). L’asymétrie des courants de flot est en outre renforcée par des vents de Nord-Ouest (Héquette et al., 2008).

Les courants de flot étant plus forts et rapides que ceux du jusant, la résultante est un faible courant de marée vers le Nord-Est. Ces courants sont, à l’origine du transit littoral des sédiments, confirmée dans le secteur du banc de Hills et de la Digue des Alliés par des récentes études (Héquette et al., 2008 et 2009 ; DHI, 2011).
Enfin, la centrale nucléaire de production électrique de Gravelines rejette des eaux réchauffées qui créent un panache thermique. Les eaux stratifiées par formation de thermocline à proximité du canal de rejet s’homogénéisent rapidement (Moulin et Beslin, 2013).

3.4. Houles

Les houles sont le deuxième agent essentiel de la dynamique du rivage. Au large, les houles dominantes proviennent du Sud-Ouest mais des houles du Nord-Est sont aussi présentes bien que plus faibles en intensité (données Service Hydrographique de Flandre du banc de Westhinder). Au large, la hauteur significative des houles est majoritairement inférieure à 1 m. Lors de fortes tempêtes, les hauteurs significatives des vagues peuvent dépasser 5 m, mais ces conditions restent très exceptionnelles (Maspataud, 2011).

La houle n’agit pas seulement la surface de l’eau, mais également une partie de la tranche d’eau, en théorie jusqu’à une profondeur égale à la moitié de sa longueur d’onde. Réciproquement, le fond agit sur les houles et lorsque la profondeur est inférieure à la demi-longueur d’onde, la houle est freinée (diminution de la longueur d’onde). Ainsi, à Dunkerque, la présence de bancs de sables, de chenaux et des brise-lames de
Malo-les Bains modifient la propagation des houles. A la côte, les hauteurs des houles décroissent en se rapprochant de la plage (Oblinger, 2008 ; Héquette et al., 2009). Pourtant, le Banc du Hills n’atténue pas autant les houles, mais favorise au contraire leur propagation du fait de la présence du chenal (Héquette et al., 2009).

La hauteur des houles varie au cours de l’année avec une alternance saisonnière. En période estivale, les faibles houles sont prédominantes et tempêtes réduites, tandis qu’en hiver, les houles sont globalement plus importante et les épisodes tempêteux plus fréquents (Reichmüth, 2003). Les valeurs extrêmes de houle au large de Dunkerque, toutes directions confondues et associées aux périodes de retour de 10 et 100 ans ont pu être estimés respectivement de 4,9 m et 5,7 m (Sogreah, 2008).

4 **Contexte hydro-morphosédimentaire**

4.1. **Transit littoral**

Transport sédimentaire sur le secteur de la Digue des Alliés, induit par les courants de houle (rouge) et courants de marée (bleu). La limite d’action des houles (isobathe -2m CM) est indiquée par le trait en pointillé rouge (DHI, 2012)

4.2. Evolution morphologique des fonds

La comparaison de documents cartographiques issus des archives du SHOM, établis entre 1836 et les années 1990, montre que la plupart des bancs de la façade Nord de la Région Nord-Pas-de-Calais ont peu évolué (Aernouts, 2005). Ce résultat s’accorde avec ceux des travaux belges qui ont montré une oscillation faible de la position et du volume des Bancs de Flandres autour d’une position moyenne (De Moor, 2002). Mais cette stabilité n’est pas généralisable. En effet, les bancs des Ridens, localisés face au port de Calais, se déplacent progressivement vers le Nord-Est sous l’action des courants de marée (Garlan, 1990; Aernouts, 2005) dominés par le flot dans cette zone. Ces mêmes études au droit de Calais ont aussi montré que les modifications de la morphologie des fonds marins proches de la côte se répercutent sur le bilan sédimentaire de la zone côtière et le profil des plages.

Pour cette même période, les zones d’exhaussement des fonds sont moins importantes, en nombre et en surface, par rapport aux zones d’abaisssement. On note toutefois, une accumulation au nord-est, directement lié à l’implantation de la jetée du Clipon et du Ruytingen. Enfin, on observe des exhaussements à l’est au devant de la digue du Braek, qui correspondent à une accumulation dans l’inter-banc et le débordement du banc de Mardyck. Ce phénomène confirme l’hypothèse d’un transfert longitudinal de...
sédiments dans ce secteur entrainant un accroissement de ce banc que ce soit vers le large ou la côte et qui est à l’origine de la plateforme-sableuse des « Sternes ».

L’utilisation des données de 1988, bien que ne couvrant qu’une petite zone proche du littoral, permet également d’attester de la migration des bancs proche de la côte. Par la suite, les évolutions sont à nouveaux plus naturelles et les petits fonds ont tendance à retrouver leur morphologie de 1962 (Bertier, 2009).

Entre 2000 et 2013, l’avant-côte a subi de profondes modifications morphologiques. En effet, la partie ouest du chenal intermédiaire présente une érosion d’un mètre en moyenne pouvant atteindre -5 m par endroits. Cette érosion est associée à l’engraissement du flanc externe du banc de Mardyck dont l’exhaussement peut atteindre +3,5 m. Ces modifications traduisent un élargissement et un creusement du chenal associé à un stockage de sédiment sur le banc de Mardyck et sa progression vers l’est (Hequette et al., 2014).

Un focus réalisé sur le banc du Hills à partir de données bathymétriques, révèle un déplacement vers la côte du banc et du chenal, de l’ordre de 300 à 500 m entre 1911-1962 et 70 à 150 m de 1962 à 2000, ce qui correspond à respectivement 6-10 m/an et 2-4 m/an. Ce mouvement est vraisemblablement du à l’action des vagues sur faibles profondeurs. Le banc à aussi été affecté par une migration longitudinale vers le nord-est de plus de 1000 m entre 1911 et 2000 explicable par le transit littoral (Héquette et al., 2013).

4.3. Evolution morphologique du littoral

Plusieurs travaux universitaires menés par l’Université du Littoral Côte d’Opale évaluent les évolutions morpho-dynamiques des plages à barres intertidales et des dunes côtières face au port de Dunkerque et le
long du littoral Est Dunkerquois (e.g. Reichmuth, 2003; Oblinger, 2008; Bertier, 2009; Maspataud, 2011; Tresca, 2013).

5 Le suivi morpho-sédimentaire de l’UG4 est réalisé par l’Equipe « Morphodynamique des Littoraux » (MDL) du Laboratoire d’Océanologie et Géosciences (LOG - UMR CNRS 8187) dans le cadre de la convention de recherche établie entre l’Université du Littoral Côte d’Opale et Dunkerque-Port.

Evolution de l’isobathe 6 m de la flèche sablo-graveleuse entre juin 2010 et octobre 2013 (Héquette et al., 2014)

5 Changement climatique et risques naturels

Depuis plusieurs millénaires l’élévation du niveau marin semble avoir été très faible mais, depuis le milieu du XXᵉ siècle, on assiste à une tendance à l’accélération de montée du niveau de la mer (GIEC, 2014). Les données marégraphiques disponibles pour les principaux ports de la côte d’Opale sont très fragmentaires. Les lacunes sont très importantes, les enregistrements ayant fait défaut pendant parfois plusieurs années consécutives et ce sur près de 10 ans dans les années 1990 pour Dunkerque (Chaverot et al., 2005 ; Cohen, 2013). En revanche, les données marégraphiques du Service permanent du niveau moyen des mers belge (PSMSL) sont plus complètes pour les stations marégraphiques de Nieuwport et Ostende, situées à peu de

6 Le GPMD a été le partenaire industriel de la thèse CIFRE d’A.Tresca. Il est aujourd’hui le partenaire de la thèse CIFRE d’A.Spodar sur l’ « Analyse morphodynamique des rechargements de plage sur le littoral du Nord de la France vers une valorisation durable des sables de dragage ».

distance à l’Est de Dunkerque. Leurs analyses montrent qu’à long terme, le niveau marin relatif est à la hausse (+1.5 mm/an à Dunkerque, +3.3 mm/an à Newport et +2.7 mm/an à Ostende).

La connaissance de l’évolution des conditions météo-marines est essentielle pour la détermination des risques sur les littoraux, densément urbanisés et donc potentiellement très vulnérables comme c’est le cas dans la région dunkerquoise, composée de polders séparés de la mer par un cordon dunaire. Selon les conditions météorologiques, le niveau de la mer peut subir une surcote qui peut jouer un rôle fondamental dans les phénomènes de submersion marine. Compte tenu du phénomène de réchauffement climatique et de la prévision par les experts du GIEC d’une accentuation en fréquence et en intensité des événements paroxysmaux, les surcotes risquent également d’être plus hautes et plus fréquentes.

Il est ainsi admis que ce sont les hauts niveaux marins atteints lors des coups de vent qui font évoluer les rivages en provoquant de fortes érosions ou des submersions (Chaverot, 2006 ; Maspataud, 2011). Toutefois, la dynamique des bancs sableux est à prendre en considération car elle semble jouer un rôle primordial dans la dynamique morpho-sédimentaire littorale locale. En effet, l’évolution du trait de côte paraît fortement corrélée à la position des bancs sableux peu profonds (Aernouts, 2003 ; Héquette et Aernouts, 2010). Les agents dynamiques façonnent ces derniers et conditionnent ainsi les mouvements.
sédimentaires de la zone côtière. Inversement, ces modifications géomorphologiques des bancs agissent sur les agents morpho-dynamiques. Paradoxalement, Maspataud (2011) a montré que la Dune Dewulf, souvent considérée (à tort) comme protégée par le Banc du Hills (Corbau, 1995), subit des houles et des courants une attaque de la côte plus intense que les Dunes du Perroquet dont l’estran peu pentu casse la dynamique érosive. En effet, le chenal de navigation plus rétréci canalise les courants, les rendant d’autant plus efficaces pour mobiliser les sédiments et éroder les fonds meubles.

Enfin, sur le littoral dunkerquois, il est admis que le marnage macrotidal, représente en fait un avantage lors des événements météo-marins, dans la mesure où l’influence des tempêtes est amoindrie par « la forte amplitude des marées, qui réduit le risque actuel comme futur d’attaque marine lors des épisodes de tempête » (Maspataud, 2011). L’érosion ne peut en effet se produire qu’autour de la pleine mer, avec la conjonction des vents persistants, d’une surcote résiduelle et d’un grand coefficient de marée. Une modélisation de l’aléa de submersion marine sur le littoral a été produite par DHI pour la DREAL Nord-Pas-de-Calais (2013)7.

6 Synthèse milieu physique
QUALITÉ DU MILIEU

La qualité des eaux et des sédiments est un facteur déterminant dans le fonctionnement des milieux. C’est un paramètre clé de l’état de conservation des espèces et habitats d’intérêt communautaire. Un état des lieux est présenté ci-dessous, il porte à la fois sur la qualité des sédiments et des eaux du site des Bancs des Flandres, mais aussi sur les eaux superficielles de la partie terrestre. Les sources potentielles de pollution analysées par origine seront examinées dans le CAHIER ACTIVITÉS STRUCTURANTES. Il s’agit notamment des espaces verts, activités domestiques, activités industrielles, activités agricoles et grands exutoires. Cette partie concerne essentiellement des analyses d’eau au niveau des différents types de rejets terrestres, et exutoires drainant les bassins versants.

1. Méthodologie retenue

L’ensemble des données compilées dans ce rapport proviennent de mesures récentes, et sont issus d’une étude réalisée par le bureau d’étude IDRA environnement (IDRA, 2014). L’année de référence choisie est celle de 2012 car le GPMD dispose de résultats d’analyses sur la qualité de l’eau, des sédiments et benthiques dans la zone Natura 2000 Bancs des Flandres pour cette date, en complément de ceux qu’il récence pour son Bilan annuel des Dragages (BAD). Par la suite, l’étude s’est attachée à recueillir des informations sur les sources potentielles de pollution datant de 2012, ou de toute autre date la plus proche possible de cette année de référence. Cependant, certaines données peuvent être plus anciennes ou plus récentes (exemple des points de rejets sur le GPMD de 2013). La date de chaque jeu de données présenté ou utilisé dans ce rapport sera précisée à chaque fois.

Dans un souci de synthèse, et étant donné le nombre de paramètre important qui est suivi sur certains sites, nous traiterons les facteurs potentiels de dégradation des eaux par grande famille de polluants. Les familles de polluants analysées seront choisies en fonction des paramètres qui sont pris en compte dans la réglementation.

1.1. Compartiment sédimentaire

Pour évaluer la qualité des sédiments, les seuils N1 et N2 de la nomenclature Loi sur l’eau parus dans l’Arrêté du 9 août 2006 concernant l’immersion de sédiments seront pris en compte. Ces seuils orientent sur les procédures à suivre (déclaration ou autorisation) pour les opérations de dragages/immersions. Les grandes familles de polluants qui seront analysées pour l’étude de la qualité des sédiments seront donc les suivants :

- Métaux (8 éléments)
- HAP (Hydrocarbures polyaromatiques - 16 éléments)
- PCB (Polychlorobiphényls - 8 congénères)
- TBT (Tributylétain)

La classification d’un échantillon est déterminée à partir de l’ensemble de paramètres présentés ci-dessus.

<table>
<thead>
<tr>
<th>Classification de l’échantillon</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ N2</td>
<td>1 paramètre ≥ N2</td>
</tr>
<tr>
<td>≥ N1</td>
<td>1 paramètre ≥ N1 et Aucun paramètre ≥ N2</td>
</tr>
<tr>
<td>< N1</td>
<td>Tous les paramètres < N1</td>
</tr>
</tbody>
</table>

Conditions requises pour classer un échantillon selon les seuils réglementaires N1/N2 (Arrêté du 9 Août 2006)
Seuils réglementaires N1/N2 en vigueur pour les dragage et immersion de sédiments (Arrêté du 9 Août 2006)

Le GPMD réalise régulièrement des analyses supplémentaires (voir tableau réseau de surveillance) :
- Microbiologie : l’analyse de la bactériologie est à effectuer si les matériaux sont susceptibles de porter atteinte à la salubrité des zones de cultures ou de baignade ;
- Biologie : des analyses biologiques sont entreprises dans le cas où les sédiments présenteraient des niveaux de contamination élevés et devraient être immergés (tests ecotox). Les essais sont réalisés sur des espèces représentatives et sensibles du milieu marin.

1.2. Compartiment aqueux

dépasser sous forme de Moyenne Annuelle (NQE-MA) ainsi que des concentrations Maximale Admissible (NQE-CMA). Les douze grandes familles de polluants aqueux qui seront étudiées dans ce rapport sont les suivantes :

- Métaux (4 éléments) et TBT
- HAP (8 éléments)
- Pesticides organochlorés
- Pesticides organophosphorés
- Herbicides azotés
- Herbicides divers
- Composés organiques volatiles
- Composés phénoliques
- Composés benzéniques
- Produits organiques divers
- Haloformes et apparentés
- Ureées carbamates
- Pesticides urées carbamates
- Herbicides divers

En outre, dans le but d’assurer la protection de l’environnement et de la santé humaine, les NQE sont utilisées afin d’atteindre les objectifs fixés par la Directive cadre sur l’eau en termes de qualité des masses d’eau. Une masse d’eau est considérée « en bon état » au sens de la DCE si elle répond conjointement aux deux critères de « bon état chimique » et de « bon état écologique ».

- L’évaluation de l’état chimique concerne 41 substances ou familles de substances, définie par la Directive « NQE » 2008/105/CE;
- L’évaluation de l’état écologique concerne les substances « spécifiques » des bassins hydrographiques français dont la liste est établie au niveau européen et national.

<table>
<thead>
<tr>
<th>État écologique</th>
<th>État chimique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biologie, Physico-chimie, Hydromorphologie</td>
<td>33 substances ou familles de substances figurant à l’annexe X de la DCE parmi lesquelles 13 substances classées comme substances dangereuses prioritaires (dont les rejets doivent être supprimés d’ici 2021) et 22 comme substances prioritaires (dont les rejets doivent être réduits) ;</td>
</tr>
<tr>
<td>substances de l’état chimique hydrophobes recherchées sur biote</td>
<td>8 substances et familles de substances de la liste I de la Directive 76/464/CEE8 non reprises dans l’annexe X de la DCE.</td>
</tr>
<tr>
<td>Substances obligatoires de la convention OSPAR</td>
<td>substances et familles de substances pertinentes au niveau national fixées par la circulaire 2007/206</td>
</tr>
<tr>
<td>substances pesticides figurant à l’Annexe IV de la circulaire 2007/206</td>
<td></td>
</tr>
<tr>
<td>Liste en cours de révision</td>
<td>Liste révisée tous les 4 ans</td>
</tr>
<tr>
<td>Très bon</td>
<td>Bon</td>
</tr>
<tr>
<td>Bon</td>
<td>Moyen</td>
</tr>
<tr>
<td>Moyen</td>
<td>Médiocre</td>
</tr>
<tr>
<td>Médiocre</td>
<td>Mauvais</td>
</tr>
</tbody>
</table>

Définition de l’état écologique et de l’état chimique

C’est l’Agence de l’eau Artois-Picardie qui est chargé du suivi de la qualité des masses d’eau superficielles, côtières et de transition au titre de la DCE. Toutes les données sont intégrées à la base de données Quadrige,

9 Circulaire DCE 2007/20 du 05 mars 2007 relative à la constitution et la mise en œuvre du programme de surveillance pour les eaux littorales en application de la DCE.

<table>
<thead>
<tr>
<th>NQE définies par l’arrêté du 29 juillet 2011 (Eaux côtières et de transition) (µg/l)</th>
<th>NQE MA^1</th>
<th>NQE CMA^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>METAUX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.2</td>
<td>-</td>
</tr>
<tr>
<td>Mercure total</td>
<td>0.05</td>
<td>0.07</td>
</tr>
<tr>
<td>Nickel</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>Plomb</td>
<td>7.2</td>
<td>-</td>
</tr>
<tr>
<td>Tributylétain</td>
<td>0.0002</td>
<td>0.0015</td>
</tr>
<tr>
<td>HAP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoranthène</td>
<td>0.1</td>
<td>1</td>
</tr>
<tr>
<td>Benzo(b)fluoranthène</td>
<td>0.03</td>
<td>-</td>
</tr>
<tr>
<td>Benzo(k)fluoranthène</td>
<td>0.03</td>
<td>-</td>
</tr>
<tr>
<td>Benzo(a)pyrène</td>
<td>0.05</td>
<td>0.1</td>
</tr>
<tr>
<td>Benzo[gh]ipréényène</td>
<td>0.002</td>
<td>-</td>
</tr>
<tr>
<td>Indéno(1,2,3-cd)pyrène</td>
<td>0.002</td>
<td>-</td>
</tr>
<tr>
<td>Anthracène</td>
<td>0.1</td>
<td>0.4</td>
</tr>
<tr>
<td>Naphthalène</td>
<td>1.2</td>
<td>-</td>
</tr>
<tr>
<td>PESTICIDES ORGANOCHELORDES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexachlorobenzène</td>
<td>0.01</td>
<td>0.05</td>
</tr>
<tr>
<td>Hexachlorocyclohexane</td>
<td>0</td>
<td>0.02</td>
</tr>
<tr>
<td>Somme Aldrin Diédrine Endrine</td>
<td>0.005</td>
<td>-</td>
</tr>
<tr>
<td>Somme métabolites DDT</td>
<td>0.025</td>
<td>-</td>
</tr>
<tr>
<td>Endosulfan</td>
<td>0.0005</td>
<td>0.004</td>
</tr>
<tr>
<td>PESTICIDES ORGANOPHOSPHORES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorpyrifos ethyl</td>
<td>0.03</td>
<td>0.1</td>
</tr>
<tr>
<td>Chlorfenirphos</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>HERBICIDES AZOTES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trifluraline</td>
<td>0.03</td>
<td>-</td>
</tr>
<tr>
<td>Simazine</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Atrazine</td>
<td>0.6</td>
<td>2</td>
</tr>
<tr>
<td>PESTICIDES UREES CARBAMATES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isoxprofuron</td>
<td>0.3</td>
<td>1</td>
</tr>
<tr>
<td>Duroc</td>
<td>0.2</td>
<td>1.8</td>
</tr>
<tr>
<td>HERBICIDES DIVERS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alachlore</td>
<td>0.3</td>
<td>0.7</td>
</tr>
<tr>
<td>HALOFORMES ET APPARENTES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroforme</td>
<td>2.5</td>
<td>-</td>
</tr>
<tr>
<td>Tétrachlorure de carbone</td>
<td>12</td>
<td>-</td>
</tr>
<tr>
<td>Dichlorométhane</td>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>1,2 dichloroéthane</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>Trichloroéthylène</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>Tétrachloroéthylène</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>COMPOSES ORGANIQUES VOLATILES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexachlorobutadiène</td>
<td>0.1</td>
<td>0.6</td>
</tr>
<tr>
<td>COMPOSES PHENOLIQUES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bentachlorophénol</td>
<td>0.4</td>
<td>1</td>
</tr>
<tr>
<td>COMPOSES BENZENIQUES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzoène</td>
<td>8</td>
<td>50</td>
</tr>
<tr>
<td>Somme tétrachlorobenzênes</td>
<td>0.4</td>
<td>-</td>
</tr>
<tr>
<td>Pentachlorobenzène</td>
<td>0.0007</td>
<td>-</td>
</tr>
<tr>
<td>PRODUITS ORGANIQUES DIVERS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroalcanes C10-C13</td>
<td>0.4</td>
<td>1.4</td>
</tr>
<tr>
<td>Di(2-éthylhexyl)phthalate</td>
<td>1.3</td>
<td>-</td>
</tr>
<tr>
<td>4-ter-octylphéron</td>
<td>0.031</td>
<td>-</td>
</tr>
<tr>
<td>Nonylphéron</td>
<td>0.3</td>
<td>2</td>
</tr>
<tr>
<td>Pentabromodiphenyléther</td>
<td>0.0002</td>
<td>-</td>
</tr>
</tbody>
</table>

Normes de Qualité Environnementales des eaux côtières et de transition des 41 substances listées par la Directive 2008/105/CE (NQE exprimée ^1 en Moyenne Annuelle, ^2 en Concentration Maximale admissible)
2 Qualité des sédiments marins

Les principales données disponibles pour la qualité des sédiments concernent le territoire du port de Dunkerque, qui réalise une analyse de la qualité des sédiments annuellement dans le cadre de son BAD (bilan annuel des dragages), ainsi que la zone Natura 2000 des Bancs des Flandres au sein de laquelle des prélèvements ont été effectués au cours de l’année 2012. Les prélèvements de sédiments dans le canal de Mardyck et le canal exutoire des Wateringues datant également de l’année 2012 complètent les analyses.

2.1. Qualité des sédiments portuaires

Les cartes de la qualité des sédiments au regard des seuils d’immersion N1 et N2 (arrêté du 9 août 2006 détaillés précédemment) montrent que les principales observations de sédiments pollués aux métaux se situent dans les bassins confinés du port Est (darses, bassin maritime, bassin de Mardyck), ainsi que dans les canaux exutoires (Canal exutoire, canal de Mardyck) qui drainent le bassin versant. Les métalloïdes qui posent les plus de problèmes sont le Cuivre, Cadmium, Mercure, Zinc, Plomb. Cependant, cette situation reste comparable annuellement au vu des suivis menées par le GPMD depuis 2009 (IDRA, 2014). A l’inverse, le chenal Extérieur Est; l’avant port Est; le chenal Trystram et le bassin d’évitage de Gaulle présentent peu de dépassement de seuil N1 depuis plusieurs années (IDRA, 2013).

Concernant les autres grandes familles de polluants, les dépassements de seuils sont moins importants : aucun dépassement N2 n’est à noter sur plusieurs années, seuls des dépassements de N1 sont observables, les niveaux de concentration sont relativement plus faibles par rapport aux métaux. On distingue usuellement les TBT dans les zones préalablement identifiées comme polluées du port Est ainsi que les HAP, y compris au niveau du canal exutoire des wateringues, comme le montre les résultats de 2012.

Les mesures sur les PCB ne donnent lieu à aucun dépassement de seuil.

Les dépassements fréquents observés dans les bassins du port Est du port de Dunkerque peuvent être expliqués par les activités industrielles historiques qui ont été pratiquées sur le site. Etant donné que ces bassins portuaires sont des milieux confinés, accessibles par l’intermédiaire d’écluses, aucun brassage ne se produit avec des eaux extérieures. De ce fait, les activités polluantes qui ont pu être pratiquées à l’époque où les normes de rejets étaient moins contraignantes ont contaminé les sédiments, qui se sont accumulés au fond des bassins et n’ont pas pu de disperser. Cette situation « fermée » du site peut également expliquer...
pourquoi les sédiments prélevés dans la zone Natura 2000 sont exempts de toute pollution vis-à-vis des seuils réglementaires sur les mêmes paramètres.

En comparaison, les sédiments prélevées dans le port Ouest du GPMD sont beaucoup plus sains, en raison non seulement du fait que l’activité industrielle y est moins concentrée, mais également parce qu’il s’agit d’un port ouvert sur la mer du Nord, où les échanges avec l’extérieur sont plus importants, participant à une dilution des concentrations en polluants. Le suivi sur plusieurs années met en évidence que les stations présentant des dépassements de seuils N1/N2 ne sont pas les mêmes d’une année sur l’autre et que les contaminants incriminés diffèrent. Ainsi en 2012, il s’agissait des dépassements au mercure pour l’appontement pétrolier et au nickel pour le canal des Dunes ; mais uniquement pour le quai à Pondéreux en 2013 sur les HAP (IDRA, 2014b).

Malgré le caractère fortement industriel du port Est et une importante contamination aux métaux lourds et polluants organiques (principalement liée au TBT et HAP) au niveau des zones semi-confinées ou confinées, les résultats des analyses menées sur les sédiments des deux canaux exutoires tendent à démontrer que les eaux en provenance du bassin versant peuvent être tout aussi polluées malgré une concentration d’industries moindre. Malgré le faible nombre de prélèvements (en comparaison de ceux qui sont effectués dans les bassins du GPMD), des dépassements importants sont à noter. De plus, s’agissant de canaux exutoires, l’eau et sédiments y sont sans cesse renouvelés, il ne s’agit a priori pas de pollution historique. Les activités dans le bassin versant peuvent expliquer ces observations ponctuelles.

Enfin, les tests éco-toxicologiques (test de développement embryo-larvaire de l’huître creuse Crassostrea gigas sur sédiments10) menés par le GPMD révèlent que la toxicité des sédiments est malgré tout faible dans le port Est et négligeable pour le port Ouest. (IDRA, 2010 et 2012).

D’autre part, l’analyse des suivis des radioéléments menés par le CNPE de Gravelines et le GPMD (IDRA, 2010b), montre que d’une année sur l’autre, les résultats des points de l’avant port Ouest et du rejet de la centrale nucléaire sont quasi similaires et ne mettent pas en évidence un impact significatif de la centrale nucléaire à proximité. Les différents résultats décrivent une radioactivité plutôt naturelle qu’artificielle. En effet, les radioéléments majoritairement dominants sont le potassium 40 ainsi que le tritium. Par conséquent, la présence de radioéléments dans les sédiments portuaires et littoraux ne semble pas constituer un problème en termes d’impact pour l’environnement.

10 Le test est effectué sur un extrait aqueux de sédiments, c’est-à-dire sur la quantité d’eau récupérée du sédiment par un protocole proche de la lixiviation. Il repose sur l’évaluation de la concentration qui, en 24h et à 24°C et à l’obscurité, induit 50% d’anomalies de développement des larves au stade « D », phase finale du développement embryonnaire. Les anomalies peuvent se caractériser par un blocage au stade d’embryon, ou par anomalie morphologique. Pour chaque échantillon pour 5g/l de sédiments, il s’agit de compter si larves sont normales ou non.

Grille de note de risque d’embryotoxicité à 5g/l de sédiment sec
(Alzieu et Quiniou, année inconnue)
2.2. Qualité des sédiments des Bancs des Flandres

En ce qui concerne le niveau de toxicité des sédiments de plage, les valeurs des tests eco-toxicologiques correspondant à une toxicité négligeable (IDRA, 2014b). Cette toxicité négligeable est confirmée par le fait que 100 % des larves exposées à une concentration de 5g de sédiments par litre d’eau ont atteint le stade ultime de développement larvaire (stade « D »), quel que soit l’échantillon considéré. Ceci souligne le fait que les activités de clapage des vases issues des dragages de Dunkerque-Port n’entraînent pas de dégradation de la qualité des sédiments en place.

2.3. Bio-évaluation de la qualité des sédiments

L’objectif d’un indice biotique est d’estimer l’état de santé du milieu et ses modifications éventuelles grâce à des groupes d’espèces dont la présence ou l’absence, l’abondance relative témoignent de déséquilibres au sein des peuplements (Alzieu, 2003). Cette méthode est donc uniquement basée sur des données biologiques et permet de mesurer l’état de santé des peuplements, et par la même du milieu, sur une échelle d’indices. Les deux avantages principaux de l’utilisation des indices biotiques sont, d’une part de révéler des anomalies environnementales non détectables par les autres méthodes, physicochimiques notamment, d’autre part de visualiser d’une façon claire et rapide les progrès réalisés dans l’amélioration du milieu (politique de bassin versant, assainissement, etc.).

Les espèces benthiques sont révélatrices d’un ensemble de conditions physico-chimiques de leurs habitats. Ainsi, il est possible de les classer selon leur réaction face à l’enrichissement du milieu en matière organique. L’Indice d’Evaluation de l’Endoafaune Côtière (I2EC) se fonde sur la distinction au sein de la macrofaune

Carte : indice d’évaluation de l’endoafaune côtière I2EC en 2014 (TBM, 2014)
benthique de cinq groupes d’espèces. Dans chaque groupe, les espèces ont en commun une sensibilité similaire vis-à-vis de la matière organique en excès et face au déficit éventuel d’oxygène résultant de sa dégradation. Le « stress environnemental » peut être perçu. A cette reconnaissance doit s’adjoindre la mesure des paramètres synthétiques : l’abondance (densité en nombre d’individus/m²), la richesse spécifique (nombre d’espèces) et des indices de diversité (Indice de Shannon Weaver) ou d’équitabilité.

Un suivi de l’I2C est réalisé annuellement par le GPMD sur plusieurs zones homogènes du GPMD, les zones d’immersion ainsi que sur une partie de la frange littorale au niveau de l’agglomération dunkerquoise. Les différentes études menées montrent que les peuplements présents sur les zones de vidages évoluent peu et sont semblables à ceux observés dans les zones de références (bancs du Hills et dyck occidental). L’indice I2EC est estimé à 1 ou 3 selon les échantillons et les années, ce qui révèle que le milieu est normal ou enrichi. Il en est de même des plages, qui présentent un I2EC de 1 ou 3, les peuplements ne semblent donc pas influencés par un excès de matière organique dans le sédiment dans la grande majorité des stations.

3 Qualité des eaux marines

Au niveau du littoral, la qualité de l’eau peut aussi être appréciée à travers le « suivi des eaux de baignade » au moyen d’indicateurs biologiques (Escherichia coli et Entérocoques fécaux) contrôlée, par l’intermédiaire de l’Agence Régionale de Santé (ARS). Ce suivi permet de connaître les impacts des divers rejets éventuels situés à l’amont du site et notamment d’apprécier les éventuels dysfonctionnements liés à l’assainissement d’eaux usées, aux rejets d’eaux pluviales souillées qui pourraient influencer la qualité des sites de baignade.
3.1. Qualité des eaux portuaires

Il ressort des analyses menées que la qualité des eaux est bonne dans l’ensemble du Port Ouest. Comme pour la qualité des sédiments, les principaux dépassements de NQE pour les métaux (cadmium, mercure, TBT) sont observés dans les bassins confinés du port Est, le long du bassin maritime ainsi que dans les canaux exutoires. Ces observations se retrouvent d’années en années, même si les stations varient. L’exhaustivité du plan d’échantillonnage permet en outre de mettre en évidence la mauvaise qualité de l’eau par des produits organiques au droit des débouchés des canaux (exutoire et de Mardyck) et des rejets des eaux pluviales le long du bassin maritime (nonyphénol et diethylhexylphtalate), ainsi que par des produits pesticides ou plastiques (carbamate et urée) essentiellement au niveau du canal exutoire. Le port Ouest présente une qualité des eaux plus saine, le quai à pondéreux (QPO) présentant toutefois des anomalies temporaires aux HAP notamment. (IDRA 2014 et 2014b).

Les informations sont manquantes pour plusieurs points, notamment les pesticides organochlorés, pour lesquels les limites de quantification du laboratoire ayant procédé aux analyses étaient supérieures aux seuils réglementaires. Il n’a donc pas été possible d’interpréter ces résultats.

A l’inverse du plan d’échantillonnage dense du GPMD, l’AEAP a qualifié en 2009 l’état de la masse d’eau de transition FRAT04 qu’est le port de Dunkerque de « mauvais » au niveau chimique et « bon » au niveau...
écologique. Ce résultat basé sur une seule station située au port Est, ne permet pas d’avoir une vision exhaustive et au plus proche de la réalité. Les facteurs déclassants sont le TBT et le méthylmercur.

3.2. Qualité des eaux marines et littorales des Bancs des Flandres

Les états des masses d’eau côtière FRAC01 et FRAC02 sont classées « bonnes » au niveau chimique et au niveau écologique.

3.2.1. Qualité au regard des seuils NQE

Les analyses NQE confirme la présence des mêmes catégories de polluants identifiés dans les bassins portuaires, au sein du site des Bancs de Flandres. Au large, on retrouve des produits organiques (nonyphénol et diethylhexylphtalate) et des composés phénoliques au niveau des zones de vidage du GPMD.

Lors des immersions de sédiments, la qualité des eaux est modifiée, notamment par la diminution temporaire de l’oxygène dissous. Les incidences sur la qualité chimique des eaux peuvent également être induites par échange des contaminants issus des sédiments vers la colonne d’eau. Mais, les sédiments restant dans un milieu physique (salinité, température, pH) identique après clapage, la relargabilité des contaminants est quasi-inexistante. D’autant plus seul les sédiments faiblement contaminés (< N1) peuvent être immergés.

Deux études réalisées par SOGREAH (2006, 2008) relatives à la dispersion des sédiments marins après leur clapage en mer a permis de modéliser les panaches turbides orientés selon les courants, sur plusieurs kilomètres au-delà de la zone de vidage et présentant une dissymétrie par rapport aux zones d’immersion (panaches plus étendus à l’Est qu’à l'Ouest) en raison de la morphologie des fonds. La turbidité naturelle des eaux du large est de l’ordre de 5 mg/l en période de calme. Les concentrations maximales obtenues juste après clapage (200 mg/l) restent localisées sur les zones d’immersion et diminuent rapidement par effet de dispersion. Par la suite, seules les zones de vidage présentent des teneurs en MES supérieures à 100 mg/l. Il est à noter que ces panaches n’influencent pas sur les concentrations en MES à la côte, puisque celles-ci ne dépassent pas les 20 mg/l. Lorsque les opérations de clapage sont terminées, les teneurs en MES au droit des zones d’immersion retombent à des niveaux observés classiquement dans cette zone (de 10 à 20 mg/l au large en période de vive-eau). Le suivi bathymétrique des dépôts sur les zones d’immersion, réalisé par le GPMD depuis 2003, montre que l’essentiel des sédiments clapés et déposés sur le fond sont repris par les courants (PANACHE, 2014 ; IDRA, 2014).
3.2.2. Qualité des eaux littorales

Au niveau du littoral, l’ARS dispose d’un jeu de données de douze ans sur le littoral Dunkerquois, entre Gravelines et la frontière belge (réseau ARS). Le tableau ci-dessous dresse le bilan des résultats des prélèvements, sur la base des conformités bactériologiques et physico-chimique, pour les différents points de baignade.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Digue des Alliés</td>
<td>●</td>
<td>(14)</td>
</tr>
<tr>
<td>(Poste de secours)</td>
<td></td>
</tr>
<tr>
<td>Malo Centre</td>
<td>●</td>
<td>(8)</td>
</tr>
<tr>
<td>Malo Terminus</td>
<td>●</td>
<td>(8)</td>
</tr>
<tr>
<td>Leffrinckoucke</td>
<td>●</td>
<td>(8)</td>
</tr>
<tr>
<td>Zuydcoote</td>
<td>●</td>
<td>(6)</td>
</tr>
<tr>
<td>Poste de secours - Bray-Dunes</td>
<td></td>
</tr>
<tr>
<td>le Ferroquet – Bray-Dunes</td>
<td>●</td>
<td>(8)</td>
</tr>
<tr>
<td>Digue du Braek</td>
<td>●</td>
<td>(6)</td>
</tr>
<tr>
<td>Petit-Fort-Philippe</td>
<td>●</td>
<td>(12)</td>
</tr>
<tr>
<td>Grand-Fort-Philippe</td>
<td>●</td>
<td>(6)</td>
</tr>
</tbody>
</table>

Légende : ● Bonne Qualité (A) ● Qualité Moyenne (B) ● Momentanément polluée (C) ● Mauvaise qualité (D)
A partir de la saison balnéaire 2013, le mode de calcul du classement est modifié en application de la directive européenne 2006/7/CE :
Point de baignade sur le littoral Dunkerquois (x) = nombre de prélèvements annuels (source : ARS)

Les analyses effectuées plusieurs fois par an entre 2001 et 2013 montrent en grande majorité une qualité des eaux de baignade moyenne à l’est du canal exutoire, avec des événements ponctuels pouvant être qualifiés de mauvais, selon la nomenclature de l’ARS, notamment au niveau du camping du Perroquet et de la digue des Alliés.

Le GPMD suit lui-aussi la qualité des eaux de baignade pendant la période estivale dans le cadre de son Arrêté préfectoral d’autorisation de dragage/immersion, afin de déterminer les teneurs en bactéries fécales des eaux de baignade et de s’assurer que les dragages n’ont pas eu d’incidence notable sur cette qualité. Il constate lui-aussi plusieurs dépassements des teneurs en bactéries fécales des eaux au niveau de Malo centre.

3.2.3. La qualité microbiologique des eaux marines : le REMI

Ces résultats sont confirmés par le suivi des points REMI. La zone de production conchylicole est classée A depuis 2009 par arrêté préfectoral. Ce classement est réactualisé annuellement après interprétation des derniers résultats du suivi REMI. Ainsi l’année 2014, a connu plusieurs alertes REMI, qui remettent en question le classement et préconisent une filtration des productions de coquillages avant leur commercialisation.

3.2.4. Qualité en phytoplancton et phycotoxines des eaux marines : le REPHY*

Les espèces observées sont classiques en Manche-Mer du Nord. Le schéma d’évolution saisonnière des populations phytoplanctoniques est classique et comprend des abondances maximales au moment du printemps puis une diminution des populations en période hivernale.
Parmi les phytoplanctons toxiques, les genres *Dinophysis* et *Alexandrium* n’ont pas été observés, seule *Pseudo-nitzschia* fait partie des 10 taxons dominants. Elle est présente dans le milieu au printemps et en automne. Les teneurs sont variables d’une année sur l’autre.

Les autres espèces observées ne présentent pas d’inconvénient pour la santé humaine. C’est le cas de l’espèce *Phaeocystis sp.*, responsable d’un bloom printanier important engendrant la formation d’une mousse abondante qui s’accumule sur le littoral. Cette mousse constitue généralement une gêne pour les activités de pêche loisir mais aussi une gêne olfactive en raison des émanations de diméthylsulfide qui s’en dégagent.

Résultats REPHY au point SRN 1 Dunkerque (001-P-015) (source IFREMER, banque Quadrige)

3.2.5. Qualité en nutriments : le SRN

La dynamique saisonnière des nitrates de l’année 2012 suit la tendance observée depuis 1992. Les concentrations maximales sont observées de janvier à mars et minimales quant à elles sont enregistrées d’avril à août avec notamment des valeurs inférieures au seuil de détection.
Les concentrations en phosphates restent très basses. Elles sont toutefois conformes à celles habituellement observées sur le site. La dynamique saisonnière est marquée par de fortes valeurs en hiver et en automne et faibles durant le printemps.

Enfin, les silicates suivent un cycle saisonnier très marqué caractérisé par des concentrations importantes en hiver et en automne et faibles ou très faibles au printemps et en été.

3.3. Macro-déchets

Un macro-déchet est défini ici comme un objet solide d’origine humain, abandonné, échoué sur les côtes, flottant à la surface de l’eau, ou gisant immergé. Ils ne comprennent donc pas les boulettes de pétrole ou les traces d’hydrocarbures.

La présence de ce type de déchets est problématique du fait de leur résistance à la biodégradation pour la plupart. Ils sont dangereux pour l’environnement écologique immédiat : étouffements des oiseaux ou mammifères marins par ingestion de résidus de matériel de pêche ou bouteilles en plastique, animaux emmêlés et blessés dans des résidus de filets de pêche, etc.

L’abondance des macrodéchets peut également constituer une gêne à la navigation en cas de collision ou d’enroulement dans l’hélice des bateaux.

Les sources de ces nombreux macro-déchets sont diverses, et se situent aussi bien sur terre qu’en mer :

- **Abandons par les usagers sur le littoral ou en mer**

Cette pollution représente environ 1 litre de déchets par personne et par jour selon le Ministère de l’Environnement (CEDRE). Les objets retrouvés sont diversifiés, tant par leur taille que leur composition : bouteilles en verre ou matière plastique, canettes en métal, mégots, journaux, crèmes solaires, vêtements etc.

- **Les navires de passage**

Il est difficile de déterminer la part de déchets issue des navires, car ils sont du même type que ceux qui sont d’origine terrestre. Cependant, des études menées par l’IFREMER mettent en évidence une corrélation entre les accumulations de débris au fond des mers et les lignes régulièrement empruntées par les car-ferries. A ce titre, les liaisons quotidiennes pour le transport de personnes entre Dunkerque / Calais et l’Angleterre peut potentiellement représenter une source important de macro-déchets.
Les ports

Les macro-déchets produits par les ports proviennent davantage de négligences que d’actions délibérées. Les déchets proviennent de pertes lors de la manutention des cargaisons sur les quais et les navires, des activités de pêche, de l’entretien des bateaux sur les aires de carénage, mais également de l’abandon d’ordures ménagères. Les ports où le nettoyage n’est pas assuré de manière adéquate et régulière voient s’accumuler dans les bassins des nappes de macro-déchets qu’il est difficile de récupérer sans les moyens adaptés. Ces nappes peuvent sortir des bassins sous l’effet du vent, des marées et courants, pour aller souiller les eaux marines.

Les engagements en matière de gestion de déchets des ports de plaisance sont exprimés dans le cahier ACTIVITES RECREATIVES ET DE LOISIRS, et celui du port de dunkerque dans le cahier AMENAGEMENTS ET ACTIVITES STRUCTURANTES.

Décharges

Décharges, notamment celles situées à proximité du littoral. Des glissements accidentels peuvent avoir lieu à la rivière ou à la mer, en raison de précipitations abondante ou de phénomènes érosifs. Les Bancs des Flandres ne connaissent pas cette situation

Les déchets d’origine naturelle

Les algues et le bois en particulier font partie du fonctionnement normal de l’écosystème. Aux échouages de végétaux marins viennent s’ajouter les échouages liés à l’eutrophisation du milieu : il s’agit d’un enrichissement de l’eau en sels nutritifs azotés ou phosphatés, lesquels favorisent la croissance végétale. Dans le langage courant, il s’agit de ce que l’on nomme les « marées vertes ». Le phénomène des marées vertes correspondent à la prolifération massive d’algues vertes. Ces algues comportent notamment la capacité d’extraire du milieu et stocker des réserves d’azote importantes, ce qui leur permet de se développer même lors d’une réduction des apports. Elles peuvent coloniser différentes types de milieux : ports, estuaires, substrat rocheux, graveleux, etc.

Elles se développent en mars/avril et prolifèrent en mai/juin. Leur croissance est généralement limitée en été en raison de la diminution naturelle estivale importante de la disponibilité en sels nutritifs. En effet, les experts s’accordent à dire que leur prolifération est due à des apports excessifs en nutriments (INERIS, 2010). Ces algues ont en effet besoin d’azote et de phosphore pour se développer. Ainsi, plus la pluviométrie pluviométrie printanière est importante, plus le lessivage des sols agricoles est important (apport de nitrates), plus la prolifération d’algues sera conséquente.

Les Bancs des Flandres ne connaissent pas cette situation.

3.4. Incidences de la qualité des eaux sur les organismes marins

Afin de s’assurer que ses activités n’ont pas d’incidences majeures sur la biologie des organismes marins, le GPMD a mis en place un suivi des contaminants chimiques dans les organismes filtreurs (moules) réputés pour « bioconcentrer » certains contaminants présents dans le milieu où ils vivent (métaux, contaminants organiques hydrophobes). Des moules sont prélèvées le long du littoral, sur l’ensemble de la façade maritime de Dunkerque-Port, et des poissons sont pêchés. La majeure partie de composés recherchés au cours de la période 2009-2013 chez les moules sont en deçà des seuils de quantification de l’appareil en
SITUATION GENERALE

dehors des 3 métaux et des HAP. Pour ces composés, la comparaison avec les seuils11 montrent que les moules sont de très bonne qualité. Les poissons pêchés ne présentent aucun danger pour la santé des consommateurs. En effet aucune teneur maximale fixée pour les contaminants n’a été franchie.

L’impact des macro-déchets sur les espèces et habitats est indiquée dans chacun des volet du cahier PATRIMOINE NATUREL.

4 Qualité des eaux continentales superficielles

La plus grande partie des eaux superficielles du delta de l’Aa sont définies par l’AEAP comme étant en \textit{état écológique « mauvais »} ainsi que \textit{« mauvais »} pour l’\textit{état chimique}. L’analyse des résultats montre que les HAP ont une part de responsabilité prépondérante dans la qualité des masses d’eau. En effet, l’ensemble du réseau hydrographique principal du delta de l’Aa est classé « bon » si l’on ne tient pas compte des HAP.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2011-2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010-2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009-2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009-2009</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008-2009</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008-2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007-2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\textit{État écológique, physico-chimique, biologique et des polluants spécifiques de 2007 à 2012 de la masse d’eau delta de l’Aa (source Agence de l’Eau Artois Picardie)}

\textit{Pot ECO : potentiel écológique, PCH : physico-chimie, Bio : biologique, PSSE : polluants spécifiques}

4.1. Les waterunges

L’ensemble du système wateringué de la plaine maritime souffrent d’un phénomène de contamination par l’eau salée (concentration relativement importante en chlorure) et d’eutrophisation. L’abaissement généralisé des niveaux d’eau dans les waterunges et l’isolement des casiers de drainage ne se vidant plus par écoulement gravitaire conduisent à un croupissement des eaux dans les fossés, alimentés par des drains souterrains qui, eux-mêmes, ont tendance à accentuer le lessivage des engrais contenus dans les terres. La demande biologique en oxygène (DB05) est importante et témoigne de la pollution organique des eaux. La masse d’eau concernant les watergangs est considérée comme fortement modifiée avec un report de l’atteinte des objectifs de la DCE en 2027. Le territoire montre ainsi une forte sensibilité de par ses caractéristiques géographiques défavorables : faibles débits véhiculés, situation en aval des bassins versants, flux de pollutions issus de l’agriculture intensive, activités industrielles.

11 Teneurs maximales autorisées dans les denrées alimentaires (règlement UE n°466/2001 et n°221/2002)

<table>
<thead>
<tr>
<th>(mg/kg pois sec)</th>
<th>Poisson</th>
<th>Mollusque</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plomb (mg/kg pois sec)</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Cadmium (mg/kg pois sec)</td>
<td>0.25</td>
<td>5</td>
</tr>
<tr>
<td>Mercure (mg/kg pois sec)</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Dioxines (pg/g poids humide)</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
4.2. Les canaux

- Etat écologique

La qualité des eaux de ces canaux est suivi mensuellement par l’AEAP sur les paramètres suivants : pH, conductivité, MES, DB05, DCO, O_2, taux de saturation en oxygène (%), NH4$^+$, NO2, NO3, paramètres NPK, PO$_4$ et P total. Il convient néanmoins de garder en tête que les résultats des 13 points de mesure peuvent être le reflet d’une situation locale spécifique qui ne sera pas forcément représentatif de l’ensemble de la masse d’eau. Seul le canal de l’Aa à Saint-Folquin présente une qualité écologique bonne.

Le niveau de matières en suspension est particulièrement élevé dans le canal de Mardyck, en comparaison des autres points de mesures dont nous disposons. Les valeurs peuvent dépasser les 45 mg/l, tandis qu’au niveau des autres prélèvements, les teneurs sont en général inférieures à 15 mg/l.

Sur les autres paramètres, les concentrations sont plus élevées à chaque fois dans les deux canaux principaux (canal de Mardyck et canal exutoire), que dans l’ensemble des autres fossés et canaux secondaires. Cela semble logique dans la mesure où ces canaux principaux concentrent les flux de pollution de l’ensemble des canaux et fossés secondaires. Cela vaut pour les quatre autres paramètres mesurés ici : demande chimique en oxygène (valeurs maximale entre 45 et 60 mg/l), demande biologique en oxygène sur 5 jours (valeurs maximales entre 3 et 4.5 mg/l, azote (environ 6 mg/l au maximum), et phosphore (jusqu’à 1.2 mg/l).

D’une façon générales, le faible débit dans les canaux, la forte pression agricole, l’absence de ripisylve ou de roselière susceptible de retenir les particules érodées et les résidus de produits phytosanitaires, ainsi qu’une
pollution industrielle importante le long des canaux exutoires (canal exutoire des wateringues et canal à grand gabarit de Mardyck), expliquent la qualité passable à très mauvaise des eaux des canaux, et ce depuis de nombreuses années.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>011304000</td>
<td>LE CANAL DE L’AA À SAINTE-OLGUIN (52)</td>
<td>2011-2012</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>011304000</td>
<td>LE GRAND DRACK À GRAVELIN CE (57)</td>
<td>2011-2012</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>011304000</td>
<td>LE CANAL DE LA MARITIME COMMUNAUTE DE CAPPELLE- BROUCK (59)</td>
<td>2011-2012</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>011307000</td>
<td>LE CANAL DE LA SAVONNERIE À ROYAL (57)</td>
<td>2011-2012</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>011308000</td>
<td>LE CANAL DE BERGES À CAPPIN LA GRANDE (59)</td>
<td>2011-2012</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>011309000</td>
<td>LE CANAL DE BOURBOURG À GRANDE-SYNTE (59)</td>
<td>2011-2012</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>011309500</td>
<td>LA NOUVELLE DESERT DE FLUVIALE À GRANDE- SYNTE (59)</td>
<td>2011-2012</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>011308000</td>
<td>LE CANAL DE BOURBOURG À BOURBOUR (59)</td>
<td>2011-2012</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>011308000</td>
<td>LE CANAL DES NOYERS À CANORRE-GRAND CANAL (59)</td>
<td>2011-2012</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>011310000</td>
<td>LE CANAL DE FOUNTES À COUDEVRE (59)</td>
<td>2011-2012</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>011510000</td>
<td>LE CANAL DE BAIN DELAYE À DINMERE (59)</td>
<td>2011-2012</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>011510000</td>
<td>LE CANAL DE MARDYCK À DIN MERE (59)</td>
<td>2011-2012</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Etat écologique des sites de la masse d’eau superficielle FRAR61 Delta de l’Aa (source : Agence de l’Eau)

- État chimique

Les cartographies des polluants NQE que l’on retrouve au niveau des exutoires révèlent que comme pour les rejets issus des industries portuaires, un certain nombre de paramètres ont des concentrations inférieures aux limites de détection du laboratoire d’analyses. De ce fait, nous disposons de données exploitables pour quatre familles de polluants.

Concernant les métaux, les valeurs les plus importantes sont rencontrées en plusieurs points du canal de Mardyck, en amont du GPMD. Les concentrations atteignent 3 à 4 µg/l. Les valeurs sont légèrement plus faibles dans le canal exutoire (2.5 à 3 µg/l). Même constatation pour les HAP, où les concentrations dans l’eau sont légèrement plus importantes dans le canal de Mardyck (0.86 µg/l).

En revanche, les teneurs en pesticides urées carbamates et en produits organiques divers sont retrouvées en quantités plus importantes dans le canal exutoire : les concentrations en pesticides peuvent être supérieures à 0.1 µg/l dans le canal exutoire, tandis que dans le canal de Mardyck, la plupart des valeurs sont inférieures à 0.075 µg/l. Sur les mesures en produits organiques divers, la plus forte concentration est observée au
niveau même où le canal exutoire se jette dans l’avant-port Est de Dunkerque (c’est-à-dire après avoir traversé l’agglomération urbaine) avec une concentration de 11.4 μg/l.

En définitive, les canaux et wateringues sont de véritables collecteurs d’eaux usées et d’effluents. En effet, les canaux sont les exutoires naturels des eaux de surface qui reçoivent des rejets des réseaux d’eaux pluviales, urbains, des stations d’épuration et des rejets industriels. Les apports des réseaux pluviaux et les rejets urbains conduisent à un enrichissement des eaux de surface en sels nutritifs, en bactéries fécales et en métaux lourds expliquant les résultats de qualité des eaux qui finiront dans les eaux portuaires et littorales des Bancs des Flandres.
5 Synthèse qualité du milieu
REFERENCES

PLANCHES
Qualité de l’eau sur les paramètres NQE dans la zone du Delta de l’Aa et dans la zone Natura 2000 Bancs des Flandres

Qualité de l’eau sur les paramètres NQE dans la zone du Delta de l’Aa et dans la zone Natura 2000 Bancs des Flandres

État des masses d'eau sur différents sites de la zone Delta de l'Aa

Source des données : Agence de l'Eau 2011/2012
Qualité de l’eau sur le territoire du Delta de l’Aa

Source des données :
Agence de l’eau, 2012
GPMD, 2012
Note
Les autres paramètres ne sont pas représentés car l'ensemble des valeurs se situent en dessous des limites de détection du laboratoire et ne varient pas selon les emplacements.

Ces valeurs sont les suivantes :
- Pesticides organochlorés 0,065 ug/l
- Pesticides organophosphorés 0,04 ug/l
- Herbicides azotés 0,14 ug/l
- Herbicides divers 0,02 ug/l
- Haloformes et apparentés 2,6 ug/l
- Composés organiques volatils 0,1 ug/l
- Composés phénoliques 0,1 ug/l
- Composés benzéniques 1,905 ug/l